1,073 research outputs found

    Electric field induced charge injection or exhaustion in organic thin film transistor

    Get PDF
    The conductivity of organic semiconductors is measured {\it in-situ} and continuously with a bottom contact configuration, as a function of film thickness at various gate voltages. The depletion layer thickness can be directly determined as a shift of the threshold thickness at which electric current began to flow. The {\it in-situ} and continuous measurement can also determine qualitatively the accumulation layer thickness together with the distribution function of injected carriers. The accumulation layer thickness is a few mono layers, and it does not depend on gate voltages, rather depends on the chemical species.Comment: 4 figures, to be published in Phys. Rev.

    Zero energy resonance and the logarithmically slow decay of unstable multilevel systems

    Get PDF
    The long time behavior of the reduced time evolution operator for unstable multilevel systems is studied based on the N-level Friedrichs model in the presence of a zero energy resonance.The latter means the divergence of the resolvent at zero energy. Resorting to the technique developed by Jensen and Kato [Duke Math. J. 46, 583 (1979)], the zero energy resonance of this model is characterized by the zero energy eigenstate that does not belong to the Hilbert space. It is then shown that for some kinds of the rational form factors the logarithmically slow decay of the reduced time evolution operator can be realized.Comment: 31 pages, no figure

    Equilibration timescale of atmospheric secondary organic aerosol partitioning

    Get PDF
    [1] Secondary organic aerosol (SOA) formed from partitioning of oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs) accounts for a substantial portion of atmospheric particulate matter. In describing SOA formation, it is generally assumed that VOC oxidation products rapidly adopt gas-aerosol equilibrium. Here we estimate the equilibration timescale, τ_(eq), of SOA gas-particle partitioning using a state-of-the-art kinetic flux model. ΀_(eq) is found to be of order seconds to minutes for partitioning of relatively high volatility organic compounds into liquid particles, thereby adhering to equilibrium gas-particle partitioning. However, τ_(eq) increases to hours or days for organic aerosol associated with semi-solid particles, low volatility, large particle size, and low mass loadings. Instantaneous equilibrium partitioning may lead to substantial overestimation of particle mass concentration and underestimation of gas-phase concentration

    Quasienergy anholonomy and its application to adiabatic quantum state manipulation

    Full text link
    The parametric dependence of a quantum map under the influence of a rank-1 perturbation is investigated. While the Floquet operator of the map and its spectrum have a common period with respect to the perturbation strength λ\lambda, we show an example in which none of the quasienergies nor the eigenvectors obey the same period: After a periodic increment of λ\lambda, the quasienergy arrives at the nearest higher one, instead of the initial one, exhibiting an anholonomy, which governs another anholonomy of the eigenvectors. An application to quantum state manipulations is outlined.Comment: 10pages, 1figure. To be published in Phys. Rev. Lett

    Initial state maximizing the nonexponentially decaying survival probability for unstable multilevel systems

    Full text link
    The long-time behavior of the survival probability for unstable multilevel systems that follows the power-decay law is studied based on the N-level Friedrichs model, and is shown to depend on the initial population in unstable states. A special initial state maximizing the asymptote of the survival probability at long times is found and examined by considering the spontaneous emission process for the hydrogen atom interacting with the electromagnetic field.Comment: 5 pages, 1 table. Accepted for publication in Phys. Rev.

    Polar surface engineering in ultra-thin MgO(111)/Ag(111) -- possibility of metal-insulator transition and magnetism

    Get PDF
    A recent report [Kiguchi {\it et al.}, Phys. Rev. B {\bf 68}, 115402 (2003)] that the (111) surface of 5 MgO layers grown epitaxially on Ag(111) becomes metallic to reduce the electric dipole moment raises a question of what will happen when we have fewer MgO layers. Here we have revealed, first experimentally with electron energy-loss spectroscopy, that MgO(111) remains metallic even when one-layer thick, and theoretically with the density functional theory that the metallization should depend on the nature of the substrate. We further show, with a spin-density functional calculation, that a ferromagnetic instability may be expected for thicker films.Comment: 5 pages, 7 figure

    Cheon's anholonomies in Floquet operators

    Full text link
    Anholonomies in the parametric dependences of the eigenvalues and the eigenvectors of Floquet operators that describe unit time evolutions of periodically driven systems, e.g., kicked rotors, are studied. First, an example of the anholonomies induced by a periodically pulsed rank-1 perturbation is given. As a function of the strength of the perturbation, the perturbed Floquet operator of the quantum map and its spectrum are shown to have a period. However, we show examples where each eigenvalue does not obey the periodicity of the perturbed Floquet operator and exhibits an anholonomy. Furthermore, this induces another anholonomy in the eigenspaces, i.e., the directions of the eigenvectors, of the Floquet operator. These two anholonomies are previously observed in a family of Hamiltonians [T. Cheon, Phys. Lett. A 248, 285 (1998)] and are different from the phase anholonomy known as geometric phases. Second, the stability of Cheon's anholonomies in periodically driven systems is established by a geometrical analysis of the family of Floquet operators. Accordingly, Cheon's anholonomies are expected to be abundant in systems whose time evolutions are described by Floquet operators. As an application, a design principle for quantum state manipulations along adiabatic passages is explained

    Distraction-Induced Intestinal Growth: The Role of Mechanotransduction Mechanisms in a Mouse Model of Short Bowel Syndrome

    Full text link
    Novel strategies are needed to address the problem of patients with short bowel syndrome. We previously demonstrated a three-fold lengthening of pig bowel after 2 weeks of applied distractive forces, but we have not elucidated the mechanisms facilitating this growth. We used a mouse model of distraction-induced enterogenesis. High molecular weight polyethylene glycol (PEG) osmotically stretched an isolated small bowel segment (PEG-stretch). Significant increases in villus height and crypt depth and in intestinal epithelial cell length and numbers suggested epithelial remodeling in addition to proliferation during enterogenesis. LC-MS/MS analysis showed a two-fold upregulation of α-actinin-1 and -4. We also demonstrated that p-focal adhesion kinase (FAK), FAK, α-actinin, and Rac1 were significantly upregulated and that F-actin was relocalized in PEG-stretch versus controls. Blockade of the phosphotidyl inositol 3? kinase pathway failed to influence the increase in proliferation or decline in apoptosis after stretch, suggesting alternative signaling pathways are used, including MEK and P38MAPK, which were both upregulated during enterogenesis. Our data suggests that several known mechanotransduction pathways drive distraction-induced enterogenesis.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140227/1/ten.tea.2013.0383.pd

    Initial wave packets and the various power-law decreases of scattered wave packets at long times

    Full text link
    The long time behavior of scattered wave packets ψ(x,t)\psi (x,t) from a finite-range potential is investigated, by assuming ψ(x,t)\psi (x,t) to be initially located outside the potential. It is then shown that ψ(x,t)\psi (x,t) can asymptotically decrease in the various power laws at long time, according to its initial characteristics at small momentum. As an application, we consider the square-barrier potential system and demonstrate that ψ(x,t)\psi (x,t) exhibits the asymptotic behavior t−3/2t^{-3/2}, while another behavior like t−5/2t^{-5/2} can also appear for another ψ(x,t)\psi (x,t).Comment: 5 pages, 1 figur

    ASCA Observations of the Supernova Remnant IC 443: Thermal Structure and Detection of Overionized Plasma

    Get PDF
    We present the results of X-ray spatial and spectral studies of the ``mixed-morphology'' supernova remnant IC 443 using ASCA. IC 443 has a center-filled image in X-ray band, contrasting with the shell-like appearance in radio and optical bands. The overall X-ray emission is thermal, not from a synchrotron nebula. ASCA observed IC 443 three times, covering the whole remnant. From the image analysis, we found that the softness-ratio map reveals a shell-like structure. At the same time, its spectra require two (1.0 keV and 0.2 keV) plasma components; the emission of the 0.2 keV plasma is stronger in the region near the shell than the center. These results can be explained by a simple model that IC 443 has a hot (1.0 keV) interior surrounded by a cool (0.2 keV) outer shell. From the emission measures, we infer that the 0.2 keV plasma is denser than the 1.0 keV plasma, suggesting pressure equilibrium between the two. In addition, we found that the ionization temperature of sulfur, obtained from H-like Kα\alpha to He-like Kα\alpha intensity ratio, is 1.5 keV, significantly higher than the gas temperature of 1.0 keV suggested from the continuum spectrum. The same can be concluded for silicon. Neither an additional, hotter plasma component nor a multi-temperature plasma successfully accounts for this ratio, and we conclude that the 1.0 keV plasma is overionized. This is the first time that overionized gas has been detected in a SNR. For the gas to become overionized in the absence of a photoionizing flux, it must cool faster than the ions recombine. Thermal conduction from the 1.0 keV plasma to the 0.2 keV one could cause the 1.0 keV plasma to become overionized, which is plausible within an old (3×104\times10^4 yr) SNR.Comment: 11 pages, 15 figures, 2 tables, accepted for publication in The Astrophysical Journa
    • 

    corecore