232 research outputs found

    Space storm measurements of the July 2005 solar extreme events from the low corona to the Earth

    Full text link
    The Athens Neutron Monitor Data Processing (ANMODAP) Center recorded an unusual Forbush decrease with a sharp enhancement of cosmic ray intensity right after the main phase of the Forbush decrease on 16 July 2005, followed by a second decrease within less than 12 h. This exceptional event is neither a ground level enhancement nor a geomagnetic effect in cosmic rays. It rather appears as the effect of a special structure of interplanetary disturbances originating from a group of coronal mass ejections (CMEs) in the 13-14 July 2005 period. The initiation of the CMEs was accompanied by type IV radio bursts and intense solar flares (SFs) on the west solar limb (AR 786); this group of energetic phenomena appears under the label of Solar Extreme Events of July 2005. We study the characteristics of these events using combined data from Earth (the ARTEMIS IV radioheliograph, the Athens Neutron Monitor (ANMODAP)), space (WIND/WAVES) and data archives. We propose an interpretation of the unusual Forbush profile in terms of a magnetic structure and a succession of interplanetary shocks interacting with the magnetosphere.Comment: Advances in Space Research, Volume 43, Issue 4, p. 600-60

    Study of the longitudinal expansion velocity of the substorm current wedge

    No full text
    International audienceIn this work we examine simultaneous observations from the two geosynchronous satellites GOES-5 and GOES-6 located at 282°E and 265°E respectively, and from middle and low latitude ground observatories located within 250°E and 294°E geographic longitude, during isolated substorms of moderate activity. The spatial distribution of our observation points allows us to make a detailed study of the azimuthal expansion of the substorm current wedge. The data analysis shows evidence that the substorm initiation and development mechanism include the cross-tail current diversion/ disruption, the substorm current wedge formation and the azimuthal expansion of the inner plasma sheet. The triggering mechanism is initially confined in a longitudinally narrow sector, estimated to be less than 15° and located very close to local midnight to the east or to the west. The current disruption region expands both eastward and westward in the magnetotail, so that the location of major field-aligned currents flowing into the ionosphere shifts successively eastward, and the location of the currents flowing out of the ionosphere shifts successively westward. Evidence was found that the perturbation travels toward the west with velocities greater than those expanding the wedge eastward. The drastic decrease of the velocity with the azimuthal distance from the location of the disturbance initiation, i.e., the onset sector, indicates that the energy release is a very localized phenomenon. Finally, the transient D perturbation observed by the geosynchronous satellites suggests that the field-aligned currents forming the wedge have a longitudunally limited extent

    Study of the longitudinal expansion velocity of the substorm current wedge

    Get PDF

    Study of the longitudinal expansion velocity of the substorm current wedge

    Full text link

    Solar energetic particle interactions with the Venusian atmosphere

    Get PDF
    Abstract. In the context of planetary space weather, we estimate the ion production rates in the Venusian atmosphere due to the interactions of solar energetic particles (SEPs) with gas. The assumed concept for our estimations is based on two cases of SEP events, previously observed in near-Earth space: the event in October 1989 and the event in May 2012. For both cases, we assume that the directional properties of the flux and the interplanetary magnetic field configuration would have allowed the SEPs' arrival at Venus and their penetration to the planet's atmosphere. For the event in May 2012, we consider the solar particle properties (integrated flux and rigidity spectrum) obtained by the Neutron Monitor Based Anisotropic GLE Pure Power Law (NMBANGLE PPOLA) model (Plainaki et al., 2010, 2014) applied previously for the Earth case and scaled to the distance of Venus from the Sun. For the simulation of the actual cascade in the Venusian atmosphere initiated by the incoming particle fluxes, we apply the DYASTIMA code, a Monte Carlo (MC) application based on the Geant4 software (Paschalis et al., 2014). Our predictions are afterwards compared to other estimations derived from previous studies and discussed. Finally, we discuss the differences between the nominal ionization profile due to galactic cosmic-ray–atmosphere interactions and the profile during periods of intense solar activity, and we show the importance of understanding space weather conditions on Venus in the context of future mission preparation and data interpretation

    Statistical analysis of solar proton events

    Get PDF
    • …
    corecore