19,258 research outputs found

    Cohomological Yang-Mills Theory in Eight Dimensions

    Full text link
    We construct nearly topological Yang-Mills theories on eight dimensional manifolds with a special holonomy group. These manifolds are the Joyce manifold with Spin(7)Spin(7) holonomy and the Calabi-Yau manifold with SU(4) holonomy. An invariant closed four form TμνρσT_{\mu\nu\rho\sigma} on the manifold allows us to define an analogue of the instanton equation, which serves as a topological gauge fixing condition in BRST formalism. The model on the Joyce manifold is related to the eight dimensional supersymmetric Yang-Mills theory. Topological dimensional reduction to four dimensions gives non-abelian Seiberg-Witten equation.Comment: 9 pages, latex, Talk given at APCTP Winter School on Dualities in String Theory, (Sokcho, Korea), February 24-28, 199

    Special Quantum Field Theories In Eight And Other Dimensions

    Get PDF
    We build nearly topological quantum field theories in various dimensions. We give special attention to the case of 8 dimensions for which we first consider theories depending only on Yang-Mills fields. Two classes of gauge functions exist which correspond to the choices of two different holonomy groups in SO(8), namely SU(4) and Spin(7). The choice of SU(4) gives a quantum field theory for a Calabi-Yau fourfold. The expectation values for the observables are formally holomorphic Donaldson invariants. The choice of Spin(7) defines another eight dimensional theory for a Joyce manifold which could be of relevance in M- and F-theories. Relations to the eight dimensional supersymmetric Yang-Mills theory are presented. Then, by dimensional reduction, we obtain other theories, in particular a four dimensional one whose gauge conditions are identical to the non-abelian Seiberg-Witten equations. The latter are thus related to pure Yang-Mills self-duality equations in 8 dimensions as well as to the N=1, D=10 super Yang-Mills theory. We also exhibit a theory that couples 3-form gauge fields to the second Chern class in eight dimensions, and interesting theories in other dimensions.Comment: 36 pages, latex. References have been added together with a not

    Studies of nucleotide sequences in TMV-RNA. II - The action of spleen diesterase

    Get PDF
    Spleen diesterase action on polynucleotide and ribonucleic acid infectivit

    Comparing the correlation length of grain markets in China and France

    Full text link
    In economics comparative analysis plays the same role as experimental research in physics. In this paper we closely examine several methodological problems related to comparative analysis by investigating the specific example of grain markets in China and France respectively. This enables us to answer a question in economic history which has so far remained pending, namely whether or not market integration progressed in the 18th century. In economics as in physics, before being accepted any new result has to be checked and re-checked by different researchers. This is what we call the replication and comparison procedures. We show how these procedures should (and can) be implemented.Comment: 16 pages, 7 figures, to appear in International Journal of Modern Physics

    A statistical study of the global structure of the ring current

    Get PDF
    [1] In this paper we derive the average configuration of the ring current as a function of the state of the magnetosphere as indicated by the Dst index. We sort magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) by spatial location and by the Dst index in order to produce magnetic field maps. From these maps we calculate local current systems by taking the curl of the magnetic field. We find both the westward (outer) and the eastward (inner) components of the ring current. We find that the ring current intensity varies linearly with Dst as expected and that the ring current is asymmetric for all Dst values. The azimuthal peak of the ring current is located in the afternoon sector for quiet conditions and near midnight for disturbed conditions. The ring current also moves closer to the Earth during disturbed conditions. We attempt to recreate the Dst index by integrating the magnetic perturbations caused by the ring current. We find that we need to multiply our computed disturbance by a factor of 1.88 ± 0.27 and add an offset of 3.84 ± 4.33 nT in order to get optimal agreement with Dst. When taking into account a tail current contribution of roughly 25%, this agrees well with our expectation of a factor of 1.3 to 1.5 based on a partially conducting Earth. The offset that we have to add does not agree well with an expected offset of approximately 20 nT based on solar wind pressure

    Predicting the effectiveness of hepatitis C virus neutralizing antibodies by bioinformatic analysis of conserved epitope residues using public sequence data

    Get PDF
    Hepatitis C virus (HCV) is a global health issue. Although direct-acting antivirals are available to target HCV, there is currently no vaccine. The diversity of the virus is a major obstacle to HCV vaccine development. One approach toward a vaccine is to utilize a strategy to elicit broadly neutralizing antibodies (bNAbs) that target highly-conserved epitopes. The conserved epitopes of bNAbs have been mapped almost exclusively to the E2 glycoprotein. In this study, we have used HCV-GLUE, a bioinformatics resource for HCV sequence data, to investigate the major epitopes targeted by well-characterized bNAbs. Here, we analyze the level of conservation of each epitope by genotype and subtype and consider the most promising bNAbs identified to date for further study as potential vaccine leads. For the most conserved epitopes, we also identify the most prevalent sequence variants in the circulating HCV population. We examine the distribution of E2 sequence data from across the globe and highlight regions with no coverage. Genotype 1 is the most prevalent genotype worldwide, but in many regions, it is not the dominant genotype. We find that the sequence conservation data is very encouraging; several bNAbs have a high level of conservation across all genotypes suggesting that it may be unnecessary to tailor vaccines according to the geographical distribution of genotypes

    Superlubricity - a new perspective on an established paradigm

    Full text link
    Superlubricity is a frictionless tribological state sometimes occurring in nanoscale material junctions. It is often associated with incommensurate surface lattice structures appearing at the interface. Here, by using the recently introduced registry index concept which quantifies the registry mismatch in layered materials, we prove the existence of a direct relation between interlayer commensurability and wearless friction in layered materials. We show that our simple and intuitive model is able to capture, down to fine details, the experimentally measured frictional behavior of a hexagonal graphene flake sliding on-top of the surface of graphite. We further predict that superlubricity is expected to occur in hexagonal boron nitride as well with tribological characteristics very similar to those observed for the graphitic system. The success of our method in predicting experimental results along with its exceptional computational efficiency opens the way for modeling large-scale material interfaces way beyond the reach of standard simulation techniques.Comment: 18 pages, 7 figure
    corecore