1,372 research outputs found

    Density waves and star formation in grand design spirals

    Full text link
    HII regions in the arms of spiral galaxies are indicators of recent star-forming processes. They may have been caused by the passage of the density wave or simply created by other means near the arms. The study of these regions may give us clues to clarifying the controversy over the existence of a triggering scenario, as proposed in the density wave theory. Using Hα\alpha direct imaging, we characterize the HII regions from a sample of three grand design galaxies: NGC5457, NGC628 and NGC6946. Broad band images in R and I were used to determine the position of the arms. The HII regions found to be associated with arms were selected for the study. The age and the star formation rate of these HII regions was obtained using measures on the Hα\alpha line. The distance between the current position of the selected HII regions and the position they would have if they had been created in the centre of the arm is calculated. A parameter, T, which measures whether a region was created in the arm or in the disc, is defined. With the help of the T parameter we determine that the majority of regions were formed some time after the passage of the density wave, with the regions located `behind the arm' (in the direction of the rotation of the galaxy) the zone they should have occupied had they been formed in the centre of the arm. The presence of the large number of regions created after the passage of the arm may be explained by the effect of the density wave, which helps to create the star-forming regions after its passage. There is clear evidence of triggering for NGC5457 and a co-rotation radius is proposed. A more modest triggering seems to exist for NGC628 and non significant evidence of triggering are found for NGC6946.Comment: 10 pages, 20 figures, accepted for publication in A&

    Testing the relevance of effective interaction potentials between highly charged colloids in suspension

    Full text link
    Combining cell and Jellium model mean-field approaches, Monte Carlo together with integral equation techniques, and finally more demanding many-colloid mean-field computations, we investigate the thermodynamic behavior, pressure and compressibility of highly charged colloidal dispersions, and at a more microscopic level, the force distribution acting on the colloids. The Kirkwood-Buff identity provides a useful probe to challenge the self-consistency of an approximate effective screened Coulomb (Yukawa) potential between colloids. Two effective parameter models are put to the test: cell against renormalized Jellium models

    Path Integral Approach to Strongly Nonlinear Composite

    Full text link
    We study strongly nonlinear disordered media using a functional method. We solve exactly the problem of a nonlinear impurity in a linear host and we obtain a Bruggeman-like formula for the effective nonlinear susceptibility. This formula reduces to the usual Bruggeman effective medium approximation in the linear case and has the following features: (i) It reproduces the weak contrast expansion to the second order and (ii) the effective medium exponent near the percolation threshold are s=1s=1, t=1+κt=1+\kappa, where κ\kappa is the nonlinearity exponent. Finally, we give analytical expressions for previously numerically calculated quantities.Comment: 4 pages, 1 figure, to appear in Phys. Rev.

    Vacuum Boundary Effects

    Full text link
    The effect of boundary conditions on the vacuum structure of quantum field theories is analysed from a quantum information viewpoint. In particular, we analyse the role of boundary conditions on boundary entropy and entanglement entropy. The analysis of boundary effects on massless free field theories points out the relevance of boundary conditions as a new rich source of information about the vacuum structure. In all cases the entropy does not increase along the flow from the ultraviolet to the infrared.Comment: 10 page

    Critical view of WKB decay widths

    Full text link
    A detailed comparison of the expressions for the decay widths obtained within the semiclassical WKB approximation using different approaches to the tunneling problem is performed. The differences between the available improved formulae for tunneling near the top and the bottom of the barrier are investigated. Though the simple WKB method gives the right order of magnitude of the decay widths, a small number of parameters are often fitted. The need to perform the fitting procedure remaining consistently within the WKB framework is emphasized in the context of the fission model based calculations. Calculations for the decay widths of some recently found super heavy nuclei using microscopic alpha-nucleus potentials are presented to demonstrate the importance of a consistent WKB calculation. The half-lives are found to be sensitive to the density dependence of the nucleon-nucleon interaction and the implementation of the Bohr-Sommerfeld quantization condition inherent in the WKB approach.Comment: 18 pages, Late

    Present and future of the OTELO project

    Full text link
    OTELO is an emission-line object survey carried out with the red tunable filter of the instrument OSIRIS at the GTC, whose aim is to become the deepest emission-line object survey to date. With 100% of the data of the first pointing finally obtained in June 2014, we present here some aspects of the processing of the data and the very first results of the OTELO survey. We also explain the next steps to be followed in the near future.Comment: Oral contribution presented in the XI Scientific Meeting of the Spanish Astronomical Society held on September 8-12, in Teruel, Spain (7 pages, 2 figures, 1 table). To appear in Highlights of Spanish Astrophysics VIII, Proceedings of the XI Scientific Meeting of the Spanish Astronomical Society. Eds. A. J. Cenarro, F. Figueras, C. Hern\'andez-Monteagudo, J. Trujillo, L. Valdiviels
    corecore