385 research outputs found

    Low-energy electrodynamics of superconducting diamond

    Full text link
    Heavily-boron-doped diamond films become superconducting with critical temperatures TcT_c well above 4 K. Here we first measure the reflectivity of such a film down to 5 cm−1^{-1}, by also using Coherent Synchrotron Radiation. We thus determine the optical gap, the field penetration depth, the range of action of the Ferrell-Glover-Tinkham sum rule, and the electron-phonon spectral function. We conclude that diamond behaves as a dirty BCS superconductor.Comment: 4 pages including 3 figure

    Phase diagram and optical conductivity of La1.8-xEu0.2SrxCuO4

    Full text link
    La1.8-xEu0.2SrxCuO4 (LESCO) is the member of the 214 family which exhibits the largest intervals among the structural, charge ordering (CO), magnetic, and superconducting transition temperatures. By using new dc transport measurements and data in the literature we construct the phase diagram of LESCO between x = 0.8 and 0.20. This phase diagram has been further probed in ac, by measuring the optical conductivity {\sigma}1({\omega}) of three single crystals with x = 0.11, 0.125, and 0.16 between 10 and 300 K in order to associate the extra-Drude peaks often observed in the 214 family with a given phase. The far-infrared peak we detect in underdoped LESCO is the hardest among them, survives up to room temperature and is associated with charge localization rather than with ordering. At the CO transition for the commensurate doping x = 0.125 instead the extra-Drude peak hardens and a pseudogap opens in {\sigma}1({\omega}), approximately as wide as the maximum superconducting gap of LSCO.Comment: 6 pages, 6 figure

    Infrared study of the charge-ordered multiferroic LuFe(2)O(4)

    Full text link
    The reflectivity of a large LuFe(2)O(4) single crystal has been measured with the radiation field either perpendicular or parallel to the c axis of its rhombohedral structure, from 10 to 500K, and from 7 to 16000 cm-1. The transition between the two-dimensional and the three-dimensional charge order at T_(CO) = 320 K is found to change dramatically the phonon spectrum in both polarizations. The number of the observed modes above and below T_(CO), according to a factor-group analysis, is in good agreement with a transition from the rhombohedral space group R{bar 3}m to the monoclinic C2/m. In the sub-THz region a peak becomes evident at low temperature, whose origin is discussed in relation with previous experiments.Comment: Physical Review B in pres

    Signatures of polaronic excitations in quasi-one-dimensional LaTiO3.41_{3.41}

    Full text link
    The optical properties of quasi-one-dimensional metallic LaTiO3.41_{3.41} are studied for the polarization along the aa and bb axes. With decreasing temperature modes appear along both directions suggestive for a phase transition. The broadness of these modes along the conducting axis might be due to the coupling of the phonons to low-energy electronic excitations across an energy gap. We observe a pronounced midinfrared band with a temperature dependence consistent with (interacting) polaron models. The polaronic picture is corroborated by the presence of strong electron-phonon coupling and the temperature dependence of the dc conductivity.Comment: 5 pages, 5 figure

    Radio Loud AGN in the Context of the Eigenvector 1 Parameter Space

    Full text link
    We consider the properties of radio-loud (RL) AGN in the context of the Eigenvector 1 (E1) parameter space. RL sources show a restricted E1 parameter space occupation relative to the radio-quiet (RQ) majority. The Fanaroff-Riley II ``parent population'' of relatively un-boosted RL sources (median radio/optical flux ratio ~490) shows the most restricted occupation. RL sources have different broad line properties (and inferred black hole masses and Eddington ratios). FWHM H_beta for the broad line component in RL sources are at least twice as large as the RQ majority. The average broad FeII emission line strength is also about half that for RQ sources. Our sample suggests that the RL cutoff occurs near R_k=70 or logP(6cm)=32.0 ergs/s/Hz. Sources below this cutoff are RQ although we cannot rule out the existence of a distinct intermediate population. We show that the Doppler boosted core-dominated RL sources (median flux ratio ~1000) lie towards smaller FWHM(H_beta_bc) and stronger FeII in E1 as expected if the lines arise in an accretion disk. Our subsample of superluminal sources, with orientation inferred from the synchrotron self Compton model, reinforce this general E1 trend and allow us to estimate the role of source orientation in driving E1 domain occupation.Comment: 9 pages, 3 figures, accepted for publication in ApJ

    The Charge Ordered State from Weak to Strong Coupling

    Full text link
    We apply the Dynamical Mean Field Theory to the problem of charge ordering. In the normal state as well as in the Charge Ordered (CO) state the existence of polarons, i.e. electrons strongly coupled to local lattice deformation, is associated to the qualitative properties of the Lattice Polarization Distribution Function (LPDF). At intermediate and strong coupling a CO state characterized by a certain amount of thermally activated defects arise from the spatial ordering of preexisting randomly distributed polarons. Properties of this particular CO state gives a qualitative understanding of the low frequency behavior of optical conductivity of NiNi perovskites.Comment: 4 pages, 3 figures, to be published in J. of Superconductivity (proceedings Stripes 98

    Polaronic optical absorption in electron-doped and hole-doped cuprates

    Full text link
    Polaronic features similar to those previously observed in the photoinduced spectra of cuprates have been detected in the reflectivity spectra of chemically doped parent compounds of high-critical-temperature superconductors, both nn-type and pp-type. In Nd2_2CuO4−y_{4-y} these features, whose intensities depend both on doping and temperature, include local vibrational modes in the far infrared and a broad band centered at ∼\sim 1000 cm−1^{-1}. The latter band is produced by the overtones of two (or three) local modes and is well described in terms of a small-polaron model, with a binding energy of about 500 cm−1^{-1}. Most of the above infrared features are shown to survive in the metallic phase of Nd2−x_{2-x}Cex_xCu04−y_{4-y}, Bi2_2Sr2_2CuO6_6, and YBa2_2Cu3_3O7−y_{7-y}, where they appear as extra-Drude peaks. The occurrence of polarons is attributed to local modes strongly coupled to carriers, as shown by a comparison with tunneling results.Comment: File latex, 31 p., submitted to Physical Review B. Figures may be faxed upon reques

    Infrared response of ordered polarons in layered perovskites

    Full text link
    We report on the infrared absorption spectra of three oxides where charged superlattices have been recently observed in diffraction experiments. In La1.67_{1.67}Sr0.33_{0.33}NiO4_4, polaron localization is found to suppress the low-energy conductivity through the opening of a gap and to split the E2uE_{2u}-A2uA_{2u} vibrational manifold of the oxygen octahedra. Similar effects are detected in Sr1.5_{1.5}La0.5_{0.5}MnO4_4 and in La2_2NiO4+y_{4+y}, with peculiar differences related to the type of charge ordering.Comment: File latex, 11 p. + 3 Figures, to appear on Phys. Rev. B (Rapid Commun.), 1 Oct. 1996. The figures will be faxed upon request. E-mail:[email protected] Fax: +39-6-446315
    • …
    corecore