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Objective: Insulin resistance is a strong biological marker of both obesity and type 2 diabetes. Abnormal fat deposition within
skeletal muscle has been identified as a mechanism of obesity-associated insulin resistance. Biliopancreatic diversion (BPD),
inducing a massive lipid malabsorption, leads to a reversion of type 2 diabetes. To elucidate the mechanisms of diabetes
reversibility, the expression of genes involved in glucose and free fatty acids (FFAs) metabolism was investigated in skeletal
muscle biopsies from obese, type 2 diabetic subjects. Peripheral insulin sensitivity and insulin secretion was also measured.
Subjects: Eight Caucasian obese diabetic patients (BMI 52.171.85 kg/m2) were studied before and 3 years after BPD.
Measurements: The mRNA levels were estimated by quantitative real-time reverse transcription polymerase chain reaction
(RT-PCR), insulin sensitivity by the euglycemic–hyperinsulinemic clamp and insulin secretion using a model describing the
relationship between insulin secretion and glucose concentration.
Results: Whole-body glucose uptake (M), normalized by fat-free mass, significantly increased in post-obese subjects
(Po0.0001). Total insulin output decreased (Po0.05) in association with a significant improvement of b-cells glucose
sensitivity (Po0.05). mRNA levels of FABP3 (Po0.05), FACL (Po0.05), ACC2 (Po0.05), HKII (Po0.05) and PDK4 (Po0.05)
were significantly decreased, while SREBP1c mRNA increased (Po0.05) after BPD.
Conclusion: Reversibility of type 2 diabetes after BPD is dependent on the improvement of skeletal muscle insulin sensitivity,
mediated by changes in the expression of genes regulating glucose and fatty acid metabolism in response to nutrient
availability.
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Introduction

Type 2 diabetes mellitus (type 2 DM) has become one of the

major global health problem with epidemic proportions.1

Obesity is moving toward the same direction.2 Insulin

resistance is a prominent biological marker of both obesity

and type 2 DM. It defines a condition in which the ability

of insulin to stimulate peripheral glucose utilization and

to inhibit hepatic glucose production is reduced, so that

normoglycemia is maintained by compensatory hyperinsu-

linemia.3 The two combined processes, that is, insulin

hypersecretion and insulin resistance, contribute to the

development of diabetes mellitus, which manifests when

the insulin secretory capacity of the b-cell becomes impaired.

Lipids cover a central role in the pathogenesis of insulin

resistance. Circulating free fatty acids (FFAs), which are

elevated in many insulin-resistant states, have been sug-

gested to contribute to the insulin resistance of diabetes and

obesity by inhibiting glucose uptake, glycogen synthesis and

glucose oxidation, and by increasing hepatic glucose out-

put.4 The link between increased circulating FFAs and insulin

resistance might involve accumulation of triglycerides (TGs)

and fatty acid-derived metabolites (diacylglycerol, fatty

acyl-CoA and ceramides) in muscle and liver. Nuclear

magnetic resonance spectroscopy has shown a close correla-

tion between intramyocellular TG content (IMTG) and

whole-body insulin resistance in patients with obesity and

type 2 diabetes.5

Fatty acids might affect insulin sensitivity in different

ways: the increased membrane fluidity decreases metabolic

rate and fatty acid-derived metabolites interfere with insulin
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signalling.6 Moreover, while IMTG enhances insulin resis-

tance,7,8 its depletion, as it occurs after a massive lipid

malabsorption subsequent to biliopancreatic diversion

(BPD), induces a net improvement in insulin sensitivity.9,10

Normally, skeletal muscle physiology is characterized by

the capacity to utilize both carbohydrate and lipid fuels;

the transition between these fuels depends on its energy

requirement. Conversely, obese and diabetic patients are

characterized by a metabolic inflexibility,11 which is an

impairment in switching between carbohydrates and fat as

fuel substrates. In fact, they have a higher lipid oxidation

in insulin-stimulated conditions12 instead of turning their

metabolism toward glucose oxidation. Even if the cellular

and molecular mechanism of the metabolic inflexibility

are not completely understood, functional impairment of

mitochondria has recently been proposed as a possible

cause.13 In type 2 diabetic subjects, skeletal muscle mito-

chondria are smaller and have an impaired bioenergetic

capacity.14

Recently, BPD has been proposed as one of the potential

therapy for diabetes.15 The effectiveness of BPD in restoring

normal glucose tolerance in the majority of diabetic patients

seems to depend mainly on enhancement in insulin

sensitivity rather then on augmented insulin secretion.16

In the attempt to clarify the mechanisms involved in the

reversibility of diabetes after BPD, insulin secretion and

sensitivity were measured together with the mRNA expres-

sion pattern of a cluster of genes encoding the major

controlling enzymes and proteins of the fatty acid oxidative

pathway in skeletal muscle biopsies from obese and type 2

diabetic patients, either before or after BPD.

Materials and methods

Subjects

The study group consists of eight Caucasian obese diabetic

patients (five women and three men, BMI 52.171.85 kg/m2),

clinically euthyroid, with no evidence of renal, cardiac or

hepatic dysfunction, or other endocrine or nonendocrine

disease and non-treated with other drugs than those for

diabetes. The onset of diabetes dated 1–3 years and the

average glycated hemoglobin was 8.871.5%. All patients

went through a metabolic investigation after which they

underwent BPD, consisting of a partial gastrectomy with a

distal Roux-en-Y reconstruction.17 Three years postopera-

tively they underwent a second metabolic investigation for

the follow-up study.

Biopsies of the vastus lateralis muscle as well as metabolic

measurements and blood samples for chemical analysis were

performed after an overnight fast during the two investiga-

tion days, before and after BPD. All subjects had given

written informed consent and the experimental protocol

was approved by the Ethical Committee of the Catholic

University in Rome.

Body composition

Before and after the surgical procedure, body weight was

measured to the nearest 0.1 kg by a beam scale and height to

the nearest 0.5 cm using a stadiometer (Holatin, Crosswell,

Wales, UK). Total body water was determined using 0.19 Bq

of tritiated water in 5 ml of saline solution administered as

an intravenous bolus injection.18 Blood samples were drawn

before and 3 h after the injected dose. The disintegrations per

minute were counted in duplicate on 0.5 ml of plasma using

a b-scintillation counter (model 1600TR; Canberra-Packard,

Meriden, CT, USA). Corrections were made (5%) for

nonaqueous hydrogen exchange,19 and water density at

body temperature was assumed to be 0.99371 kg/l. Total

body water (in kg) was computed as 3H2O dilution space

(in l)�0.95�0.99371. The within-person day-by-day coeffi-

cient of variation reported for this method was 1.5%.20

Euglycemic–hyperinsulinemic clamp procedure

Peripheral insulin sensitivity was evaluated by the 2 h

euglycemic–hyperinsulinemic clamp (EHC) procedure.21

After inserting a cannula in a dorsal hand vein for sampling

arterialized venous blood and another one in the antecubital

fossa of the contralateral arm for infusions, the subjects rested

in a supine position for at least 1 h. They were placed with

one hand warmed in a heated air box set at 601C to obtain

arterialized blood samples. Whole-body glucose uptake

(M value) in micromoles per kilogram of fat-free mass (FFM)

per minute was determined during a primed-constant

infusion of insulin (at the rate of 6 pmol/kg/min). The fasting

plasma glucose concentration was maintained throughout

the insulin infusion by means of a variable glucose infusion

and blood glucose determinations every 5 min. Whole-body

peripheral glucose use was calculated during the last 40-min

period of the steady-state insulin infusion.

Insulin secretion

Beta-cell function was assessed by the C-peptide deconvolu-

tion method after oral glucose tolerance test (OGTT).22

Skeletal muscle biopsies and preparation of total RNA

Muscle biopsies were obtained under local anesthesia from

the vastus lateralis portion of the quadriceps femoris muscle

at 0800 hours in a different section from EHC procedure.

Tissue samples were immediately placed in liquid nitrogen

and total RNA was extracted from the frozen tissue according

to an established procedure.23 Average yields of total RNA

were 0.2170.08 and 0.1870.1 mg/mg of muscle (wet

weight)in pre- and post-BPD respectively. Total RNA samples

were stored at �801C.

Quantification of mRNAs

The concentrations of the mRNAs corresponding to the

genes of interest listed in Table 1 were measured by
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quantitative real-time polymerase chain reaction (PCR)

using a light cycler (Roche Diagnostics, Meylan, France),

as described previously.24 First-strand cDNAs were first

synthesized from 1mg of total RNA in the presence

of 100 U of Superscript II (Invitrogen, Eragny, France)

using both random hexamers and oligo (dT) primers

(Promega, Charbonnières, France). The real-time PCR

was performed in a final volume of 20 ml containing 5ml of

a 60-fold dilution of the room temperature (RT) reaction

medium, 15 ml of reaction buffer from the FastStart DNA

Master SYBR Green kit (Roche Diagnostics) and 10.5 pmol of

the specific forward and reverse primers (Eurobio, Les Ulis,

France).

A list of primers and real-time PCR conditions for each

mRNA assay is available upon request (vidal@laennec.

univ-lyon1.fr). After amplification, a melting curve analysis

was performed to verify the specificity of the reaction. For

quantification, a standard curve was systematically gener-

ated with six different amounts (150–30 000 molecules/tube)

of purified target cDNA cloned in the pGEM plasmid

(Promega). The analysis was performed using the LightCycler

software (Roche Diagnostics). The results were expressed

relative to the hypoxanthine phosphoribosyltransferase 1

(HPRT) mRNA concentration, a housekeeping gene used as

an internal control and measured in each sample by

quantitative real-time PCR. A similar concentration of HPRT

mRNA was found in skeletal muscle before and after BPD

(0.2270.02 vs 0.2670.04, Po0.354).

Blood chemistry

Plasma glucose levels were measured by a glucose-

oxidase method (Beckman, Fullerton, CA, USA). Serum

immunoreactive insulin was assayed by using microparticle

enzyme immunoassay (Abbott, Pasadena, CA, USA). Serum

FFAs and TGs were measured by enzymatic, colorimetric

methods.

Statistical analysis

Data are reported as mean7s.e., unless otherwise specified.

Data analyses were performed with SPSS statistical software

(SPSS Inc., Chicago, IL, USA). Two-sided Po0.05 was

regarded as significant.

The Wilcoxon’s signed rank test was performed to compare

data from the same subjects before and after BPD, adjusting

the P-values by using Bonferroni method. The distribution

of the residuals, testing for normality and checking the

linearity assumptions in the model by means of standard

scatter plots.

Predictors of insulin sensitivity changes were tested using

the Spearman’s correlation. Multiple linear regression was,

then, used to fit a model to predict insulin sensitivity

changes after BPD. Predictor variables considered for this

model included FACL mRNA, FABP3 mRNA, PDK4 mRNA,

HKII mRNA, ACC2 mRNA, plasma levels of FFAs and total

insulin output. Variables were allowed to enter the models if

significant at the o0.05 probability level.

Results

Table 2 summarizes changes in anthropometric variables

after BPD operation and Figure 1 represents the mRNA

expression of the enzymes and proteins quantified in this

study.

The average weight loss observed was in the order of 40%,

depending mainly on a massive decrease in fat mass (B52%),

whereas FFM reduction accounted for 24%.

Circulating TGs dropped from 2.5170.30 to 1.4370.10 mM

(Po0.01) after BPD as well as plasma FFAs (0.5970.10 vs

0.2370.02 mM, Po0.05). A similar reduction was observed

for total plasma cholesterol (5.6670.41 vs 3.6770.43 mM;

Po0.05). Fasting plasma insulin (120.60715.54 vs 45.307
6.74 pM, Po0.01) and fasting plasma glucose (7.0770.83 vs

4.0570.06 mM, Po0.01) were both significantly reduced.

EHC showed that whole-body glucose uptake, normalized

by FFM, significantly increased in post-obese subjects

(25.1171.72 vs 54.1272.39 mmol/kgFFM/min, Po0.0001).Table 1 Genes involved in the study

ACC2 Acetyl CoA carboxylase-2

AdipoR1 Adiponectin receptor 1

AdipoR2 Adiponectin receptor 2

CPT1 Carnitine palmitoyl CoA transferase 1

CPT2 Carnitine palmitoyl CoA transferase 2

FABP3 Fatty-acid-binding protein 3

FACL Fatty-acid CoA ligase

FAT/CD36 Fatty-acid translocase

PDK4 Pyruvate dehydrogenase kinase 4

PPARa Peroxisome proliferator-activated receptor a
PPARb Peroxisome proliferator-activated receptor b
UCP 2 Uncoupling protein 2

UCP 3 Uncoupling protein 3

GS Glycogen synthase

GLUT 4 Glucose transporter 4

HKII Hexokinase II

SREBP 1c Sterol regulatory element binding protein 1c

HPRT (as reference gene) Hypoxanthine phosphoribosyltransferase 1

Table 2 Anthropometric characteristics of the subjects

Characteristics Before BPD After BPD P

Weight (kg) 155.6778.90 82.3875.70 o0.001

BMI (kg/m2) 52.9771.85 30.8071.45 o0.001

FFM (kg) 81.5073.62 62.2674.70 o0.001

FM (kg) 65.6372.32 20.1171.84 o0.001

Triglycerides (mM) 2.5170.30 1.4370.10 o0.001

FFAs (mM) 0.5970.10 0.2370.02 o0.05

Cholesterol (mM) 5.6670.41 3.6770.43 o0.05

Insulin (pM) 126.6715.54 45.376.74 o0.01

Glycemia (mM) 7.0770.83 4.0570.06 o0.01

M/FFM (mmol/kgFFM/min) 25.1171.72 54.1272.39 o0.0001

Insulin output (pmol/min/m2) 45.2878.85 21.4371.66 o0.05

Abbreviations: BMI, body mass index; FFA, free fatty acids; FFM, fat-free mass;

FM, fat mass. Values are expressed as mean7s.e.
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The insulin output after OGTT significantly decreased

in the patients who underwent BPD (45.2878.85 vs

21.4371.66 pmol/min/m2, Po0.05). Figure 2 reports the

plots of total insulin output against insulin sensitivity. The

experimental data were well fitted by a mono-exponential

equation (y¼211.85e�0.065xR2¼0.61 before BPD and

y¼124.2e�0.0329xR2¼0.93 after BPD, Po0.001). While the

y-intercept halved, the slope of the curve was much stepper,

its value being doubled after the operation.

The expression of all the mRNAs in vastus lateralis muscle

was determined by quantitative real-time RT-PCR before and

3 years after the surgical procedure. The results are reported

in Figure 3. The mRNA levels of FABP3 (87.9716.7 vs

35.375.5, Po0.05), FACL (10.671.7 vs 7.771.9, Po0.05),

ACC2 (0.7470.07 vs 0.4870.07, Po0.05), HKII (2.9270.38

vs 1.4270.18, Po0.05) and PDK4 (131.1715.9 vs

56.2710.7, Po0.05) were significantly decreased after BPD,

while SREBP1c mRNA amount increased (2.470.2 vs

3.370.5, Po0.05). The expression of FAT/CD36, CPT1,

CPT2, UCP2, UCP3, PPARa, PPARb AdipoR1, AdipoR2, GLUT4

and GS mRNAs were not significantly modified after the

operation.

A significant positive correlation (Figure 4) was found

between changes of plasma glucose concentrations and

changes of HKII mRNA levels expressed as delta (pre-post

BPD) (y¼5.32xþ59.15, R2¼ 0.2239, Po0.05). Results Delta

PDK4 mRNA correlate directly with delta FFAs (y¼103.23x–

37.74, R2¼0.3829, Po0.05, Figure 5a) and inversely with

delta glucose uptake values (y¼�0.06xþ22.24, R2¼0.3109,

Po0.05, Figure 5b). Finally, comparison between delta

plasma FFAs and delta FACL mRNA levels showed a positive

linear correlation (y¼0.06x–0.17, R2¼0.3682, Po0.05,

Figure 6).

A multiple regression analysis was used to evaluate

the joint effect of changes in PDK4 mRNA, HKII mRNA,

ACC2 mRNA, FACL mRNA, FABP3 mRNA, changes of FFAs

and insulin output on the changes of the M value. Changes

of PDK4 mRNA amounts (P¼0.045) were the one indepen-

dent variable for predicting M variation (Adj R2¼0.93;

P¼0.043).

Discussion

This study contributes to elucidate the molecular mecha-

nisms responsible for the reversibility of type 2 diabetes after

malabsorptive bariatric surgery. We have already demon-

strated in these patients that glucose tolerance normalized at

a time when the body mass index was not significantly

changed.15 However, although insulin secretion was fully

normalized in glucose normo-tolerant and impaired-glucose

tolerant obese individuals, its normalization in type 2

Figure 1 Schematic representation of the main metabolic pathway of

energy metabolism in skeletal muscle. FAT/CD36, fatty-acid translocase;

FABPpm, plasma membrane fatty acid-binding protein; FABP3, cytosolic fatty

acid-binding protein-3; FACL, fatty-acid CoA ligase; CPT1, carnitine palmitoyl

CoA transferase; ACC2, acetyl CoA carboxylase-2; PDK4, pyruvate dehydro-

genase kinase 4; AdipoR, adiponectin receptor; GLUT4, glucose transporter 4;

IR, insulin receptor; SREBP1c, sterol regulatory-binding protein 1c; PDH,

pyruvate dehydrogenase; HK, hexokinase; AMPK, AMP-activated protein

kinase; LPL, lipoprotein lipase; FA, fatty acid; TAG, triacylglycerol; SRE, SREBP-

responsive element; LEPR, leptin receptor.

Figure 2 Curvilinear reciprocal relationship between total insulin secretion

and insulin resistance (as measured by the euglycemic clamp technique) in the

groups of subjects. Solid line and &, before BPD; dashed line and W, 3 years

after BPD.
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diabetic subjects was a function of the duration of diabetes.16

In other words, the b-cell failure in secreting insulin can be

only partially reverted if diabetes had a long duration before

BPD. On the contrary, tissue insulin sensitivity increased

twofold up to normal values25–28 independently of changes

in body weight. In our series, we found that the reversibility

of diabetes, as shown by normalization of glycated hemo-

globin and plasma glucose levels 2 h after OGTT, depends on

the improvement in insulin sensitivity and, as a conse-

quence, on the reduction in insulin secretion. In fact, the

sensitivity of b-cell to glucose was increased after the

operation as shown in Figure 2 by the shift to the right of

the curve fitting the experimental points of insulin secretion

as a function of the insulin sensitivity.

Moreover, surgically induced lipid malabsorption, with

consequent amelioration of the metabolic profile, is accom-

panied by changes in key gene expression controlling both

lipid and glucose metabolism.

In this study, we have verified a significant decrease in

the expression level of FABP3, FACL, ACC2, PDK4 and HKII

mRNAs and a significant increase in SREBP1c mRNA in

skeletal muscle of formerly obese type 2 diabetic patients.

The reduction of PDK4 mRNA is directly correlated to the

decrease of plasma FFAs and inversely to glucose uptake

values during the clamp. The decrease of HKII mRNA levels

positively correlate with plasma glucose concentrations as

well as with plasma FFAs variations and FACL mRNA levels.

Taken altogether, these results reflect metabolic adapta-

tions of the skeletal muscle – which represents the principal

site of insulin-mediated glucose disposal29 – to a specific

nutritional state. In fact, after BPD a massive lipid malab-

sorption intervenes, translating into a reduced availability of

fatty acids and into an improved glucose utilization. It is

important to consider that while in healthy subjects skeletal

muscle is able to switch between carbohydrates and fat as

fuel substrates depending on its energy requirement, in

insulin-resistant states, such as type 2 diabetes or obesity,

this capability is lost. In fact, obese and type 2 diabetic

subjects display a higher lipid oxidation in insulin-stimu-

lated conditions12 instead of turning their metabolism

towards glucose oxidation.

The reduced flux of fatty acids observed after BPD might

induce an inhibition of de novo lipogenesis, together with an

increased efficiency in lipid oxidation, as supported by the

reduction in ACC2 mRNA. In fact, if altered ACC2 expression

is responsible for changes in ACC2 protein content and

activity, reduced amount of malonyl-CoA, the product of the

ACC2 enzyme, removes the inhibition on carnitine palmi-

toyl transferase I enhancing the long-chain fatty acid-CoA

(LCFA-CoA) transportation into the mitochondria, where

they are oxidized.3 Interestingly, increased expression of
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ACC2 mRNA has been previously reported in the skeletal

muscle of moderately obese subjects.30 Meanwhile, a

decrease of de novo fatty acid synthesis, as supported by

the reduction in ACC2 expression, might contribute to a

reduction in intramyocellular LCFA- CoA, which have been

implicated in the causality of insulin resistance.31,32 The

reduced flux of fatty acids is also in agreement with

decreased mRNA expression level of both FABP3, the major

isoform of cytosolic fatty acid binding protein expressed in

skeletal muscle, and FACL, the enzyme that catalyzes the

activation of LCFA into LCFA-CoA Therefore, the reduced

expression of FACL mRNA might depend on the lower

availability of circulating fatty acids.

Sterol regulatory binding proteins are a family of tran-

scription factors controlling the expression of several

enzymes implicated in cholesterol, lipid and glucose meta-

bolism that are transcriptionally regulated by insulin.33,34

SREBP1c is the major isoform presents in skeletal muscle and

its expression is reduced in type 2 diabetic subjects.35 We

hypothesize that the improvement of cellular responsiveness

to insulin after BPD can restore SREBP1c expression.

The reversion of diabetes restores glucose metabolism in

formerly obese diabetic patients. In this regard, we have

found a decrease in both HKII and PDK4 mRNA levels.

Hexokinase II (HKII), by converting glucose to glucose

6-phosphate, helps to maintain the glucose concentration

gradient that results in the movement of glucose into the
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cells. The reduction in glycaemia after BPD causes a

diminished flux of glucose across the cell. It is likely that,

in this situation, the balance of cellular glucose availability is

ensured by a minimal amount of HKII. In agreement with

this hypothesis, we have found a direct relation between

plasma glucose concentration and HKII gene expression: the

lower the amount of the substrate, the lower the quantity of

the transcript. Furthermore, the reduced amount of the

enzyme does not impair glucose metabolism. Therefore, it is

possible that HKII is more active after BPD, perhaps owing to

a higher percentage of this isoform docked to the mitochon-

drial membrane. This hypothesis is supported by data in the

literature showing that the activity of HK in vivo is much

larger in the mitochondrial that in the cytosolic fraction;36

the transition from one to the other HK form being mediated

by insulin.37 Furthermore, it has been demonstrated that in

mice heterozygotes for HKII deficiency, a 50% reduction of

both HKII mRNA and activity does not impair insulin action

or glucose tolerance.38 Anyway, measurement of the activity

of HKII and a deeper study of its regulation in skeletal muscle

of diabetic subjects could provide more compelling evidence

for this hypothesized mechanism. However, it is important

to point out that a decreased expression does not necessarily

translate intoa decreased activity. For example, exercise has

been demonstrated to increase HKII mRNA expression

without changing the activity level of the enzyme.39

PDK4 phosphorylates and, hence, inactivates the PDH

complex that catalyzes the first irreversible step in glucose

oxidation.40,41 The reduction of PDK4 mRNA consequent to

BPD, if in accordance to reduction of protein level, is

consistent with the shift towards carbohydrates oxidation

observed after the operation. Before surgery, the increased

availability and, consequently, the enhanced oxidation of

fatty acids might promote activation of PDK442–44 and, thus,

inhibit glucose metabolism. After BPD, the strong decrease in

fatty acids availability might inhibit the expression of PDK4,

thus restoring PDH complex function. The correlation of

PDK4 mRNA expression with both plasma FFAs and glucose

uptake, strongly supports this hypothesis which is confirmed

by the fact that changes of PDK4 levels after BPD are the only

factors involved in the improvement of insulin sensitivity.

It might be possible that other mechanisms intervene in

the reversibility of diabetes, such as the action of some

adipo-cytokines, like adiponectin and leptin. In fact, it is

well known that both these hormones stimulate glucose

utilization and fatty-acid oxidation in skeletal muscle,45,46

the latter being regulated through the phosphorylation and

activation of 50-AMP-activated protein kinase (AMPK) which,

in turn, inhibits the activity of ACC. We have previously

demonstrated that adiponectin circulating levels signifi-

cantly increase in normotolerant, morbidly obese subjects

after BPD.28 Similarly, the reversion of insulin resistance

following BPD allows to the reversal of leptin resistance, the

restoration of leptin pulsatility and, subsequently, increased

fatty-acid oxidation.47 However, additional studies are

needed to demonstrate a role of such hormones as regulators

of genes involved in skeletal muscle energy metabolism. Also

fatty acids may control gene transcription as well. Indeed, it

has become evident that FFAs can act as signalling molecules

involved in regulating gene expression of both lipid and

glucose metabolism,48 mainly acting through the activation

of PPARs. Nevertheless, further investigations are necessary

to identify the transcription factors involved in the coordi-

nately control of gene expression in response to lipid

malabsorption in these subjects.

There is an increasing body of evidence that underlines

the importance of increased signals relative to inflammatory

cytokines, which stimulate increased deposition of collagen

and other lipid metabolites.49 This would, in turn, interfere

with normal insulin signalling. So far, inflammatory signals

(inflammatory cytokines and markers such as TNFa, IL1 or

CRP) are supposedly responsible for this phenomenon. It

is highly likely that the subjects studied in this experiment

would be characterized by a decrease in inflammatory

markers, and that reduction of adiposity observed in our

series may play a role in the reduction of low-grade chronic

inflammation. Further sets of studies will be appropriate in

order to confirm this hypothesis.

In conclusion, we have shown that reversibility of diabetes

in subjects underwent BPD is dependent on the improve-

ment of skeletal muscle insulin sensitivity, mediated by

changes in the expression of genes regulating glucose and

fatty-acid metabolism in response to nutrient availability.
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