1,550 research outputs found
Canonical general relativity: Matter fields in a general linear frame
Building on the results of previous work, we demonstrate how matter fields
are incorporated into the general linear frame approach to general relativity.
When considering the Maxwell one-form field, we find that the system that leads
naturally to canonical vierbein general relativity has the extrinsic curvature
of the Cauchy surface represented by gravitational as well as non-gravitational
degrees of freedom. Nevertheless the metric compatibility conditions are
undisturbed, and this apparent derivative-coupling is seen to be an effect of
working with (possibly orthonormal) linear frames. The formalism is adapted to
consider a Dirac Fermion, where we find that a milder form of this apparent
derivative-coupling appears.Comment: 13 pages; uses AMS-latex style file
Recommended from our members
Cap-and-trade of water rights: A sustainable way out of Australia's rural water problems?
Trading water rights is a tool for re-allocation of water resources in water-scarce regions such as Australia. Tradable water rights help farmers to act flexibly when facing high fluctuations in water availability and to use the water in a sustainable and environmentally friendly manner. A precondition is that the quantity of water rights is capped at an appropriate level. The institutional arrangements and market structures in which water-right trading is embedded are key factors for the success of such water management instruments. By analysing the structure of the water-right market and water caps as well as using results from explorative expert interviews, the article sheds light on potential problems with the Australian cap-and-trade scheme concerning sustainable water usage. It also asks whether the Australian scheme provides lessons to be learnt by other countries facing similar problems
Recombinant human interferon alpha 2b prevents and reverses experimental pulmonary hypertension
Pulmonary hypertension (PH) is a progressive and fatal disease with no cure. Vascular remodeling in PH involves intraluminal growth of endothelial and smooth muscle cells, leading to obliterative vascular lesions. Cell growth in these lesions is quasi-neoplastic, with evidence of monoclonality, apoptosis resistance and cancer-like metabolic derangements. Herein we tested the effect of human interferon alpha 2b (IFNα), a pleiotropic cytokine and anti-cancer therapeutic, on the development and progression of PH in the rat SU5416/hypoxia (SUH) model and mouse hypoxia model of the disease. In both models IFNα attenuated the development of PH and reversed established PH as assessed by measuring right ventricular systolic pressure and right ventricular hypertrophy. The effect of IFNα was dependent on the type I interferon receptor (IFNAR) since mice lacking a subunit of the IFNAR were not protected by IFNα. Morphometric analysis of pulmonary aterioles from hypoxic mice or SUH rats showed that IFNα inhibited pulmonary vascular remodeling in both models and that IFNα reversed remodeling in SUH rats with established disease. Immunohistochemical staining revealed that IFNα decreased the number of PCNA and Tunel positive cells in the wall of pulmonary arterioles. In vitro, IFNα inhibited proliferation of human pulmonary artery smooth muscle cells and as well as human pulmonary artery endothelial cell proliferation and apoptosis. Together these findings demonstrate that IFNα reverses established experimental PH and provide a rationale for further exploration of the use of IFNα and other immunotherpies in PH. © 2014 Bauer et al
Frege on the Generality of Logical Laws
Frege claims that the laws of logic are characterized by their “generality,” but it is hard to see how this could identify a special feature of those laws. I argue that we must understand this talk of generality in normative terms, but that what Frege says provides a normative demarcation of the logical laws only once we connect it with his thinking about truth and science. He means to be identifying the laws of logic as those that appear in every one of the scientific systems whose construction is the ultimate aim of science, and in which all truths have a place. Though an account of logic in terms of scientific systems might seem hopelessly antiquated, I argue that it is not: a basically Fregean account of the nature of logic still looks quite promising
Recommended from our members
How tight are the limits to land and water use? - Combined impacts of food demand and climate change
In the coming decades, world agricultural systems will face serious transitions. Population growth, income and lifestyle changes will lead to considerable increases in food demand. Moreover, a rising demand for renewable energy and biodiversity protection may restrict the area available for food production. On the other hand, global climate change will affect production conditions, for better or worse depending on regional conditions. In order to simulate these combined effects consistently and in a spatially explicit way, we have linked the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) with a "Management model of Agricultural Production and its Impact on the Environment" (MAgPIE). LPJ represents the global biosphere with a spatial resolution of 0.5 degree. MAgPIE covers the most important agricultural crop and livestock production types. A prototype has been developed for one sample region. In the next stage this will be expanded to several economically relevant regions on a global scale, including international trade. The two models are coupled through a layer of productivity zones. In the paper we present the modelling approach, develop first joint scenarios and discuss selected results from the coupled modelling system
Adaption reveals a neural code for the visual location of orientation change
We apply an adaptation technique to explore the neural code for the visual location of textures defined by modulation of orientation over space. In showing that adaptation to textures modulated around one orientation shifts the perceived location of textures modulated around a different orientation, we demonstrate the existence of a neural code for the location of orientation change that generalises across orientation content. Using competitive adaptation, we characterise the neural processes underlying this code as single-opponent for orientation, that is with concentric excitatory/inhibitory receptive areas tuned to a single orientation.<br /
Recommended from our members
The impact of climate change on incomes and convergence in Africa
© 2019 Elsevier Ltd Climate change is projected to detrimentally affect African countries’ economic development, while income inequalities across economies is among the highest on the planet. However, it is projected that income levels would converge on the continent. Hitherto there is limited evidence on how climate change could affect projected income convergence, accelerating, slowing down, or even reversing this process. Here, we analyze convergence considering climate-change damages, by employing an economic model embedding the three dimensions of risks at the country-level: exposure, vulnerability and hazards. The results show (1) with historical mean climate-induced losses between 10 and 15 percent of GDP per capita growth, the majority of African economies are poorly adapted to their current climatic conditions, (2) Western and Eastern African countries are projected to be the most affected countries on the continent and (3) As a consequence of these heightened impacts on a number of countries, inequalities between countries are projected to widen in the high warming scenario compared to inequalities in the low and without warming scenarios. To mitigate the impacts of economic development and inequalities across countries, we stress (1) the importance of mitigation ambition and Africa's leadership in keeping global mean temperature increase below 1.5 °C, (2) the need to address the current adaptation deficit as soon as possible, (3) the necessity to integrate quantitatively climate risks in economic and development planning and finally (4) we advocate for the generalization of a special treatment for the most vulnerable countries to access climate-related finance. The analysis raises issues on the ability of African countries to reach their SDGs targets and the potential increasing risk of instability, migration across African countries, of decreased trade and economic cooperation opportunities as a consequence of climate change – exacerbating its negative consequences
How tight are the limits to land and water use? - Combined impacts of food demand and climate change
In the coming decades, world agricultural systems will face serious transitions. Population growth, income and lifestyle changes will lead to considerable increases in food demand. Moreover, a rising demand for renewable energy and biodiversity protection may restrict the area available for food production. On the other hand, global climate change will affect production conditions, for better or worse depending on regional conditions. In order to simulate these combined effects consistently and in a spatially explicit way, we have linked the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) with a "Management model of Agricultural Production and its Impact on the Environment" (MAgPIE). LPJ represents the global biosphere with a spatial resolution of 0.5 degree. MAgPIE covers the most important agricultural crop and livestock production types. A prototype has been developed for one sample region. In the next stage this will be expanded to several economically relevant regions on a global scale, including international trade. The two models are coupled through a layer of productivity zones. In the paper we present the modelling approach, develop first joint scenarios and discuss selected results from the coupled modelling system
Classical and quantum radiation from a moving charge in an expanding universe
We investigate photon emission from a moving particle in an expanding
universe. This process is analogous to the radiation from an accelerated charge
in the classical electromagnetic theory. Using the framework of quantum field
theory in curved spacetime, we demonstrate that the Wentzel-Kramers-Brillouin
(WKB) approximation leads to the Larmor formula for the rate of the radiation
energy from a moving charge in an expanding universe. Using exactly solvable
models in a radiation-dominated universe and in a Milne universe, we examine
the validity of the WKB formula. It is shown that the quantum effect suppresses
the radiation energy in comparison with the WKB formula.Comment: 16 pages, JCAP in pres
- …