15,356 research outputs found

    Extended Hubbard model for mesoscopic transport in donor arrays in silicon

    Get PDF
    Arrays of dopants in silicon are promising platforms for the quantum simulation of the Fermi-Hubbard model. We show that the simplest model with only on-site interaction is insufficient to describe the physics of an array of phosphorous donors in silicon due to the strong intersite interaction in the system. We also study the resonant tunneling transport in the array at low temperature as a mean of probing the features of the Hubbard physics, such as the Hubbard bands and the Mott gap. Two mechanisms of localization which suppresses transport in the array are investigated: The first arises from the electron-ion core attraction and is significant at low filling; the second is due to the sharp oscillation in the tunnel coupling caused by the intervalley interference of the donor electron's wavefunction. This disorder in the tunnel coupling leads to a steep exponential decay of conductance with channel length in one-dimensional arrays, but its effect is less prominent in two-dimensional ones. Hence, it is possible to observe resonant tunneling transport in a relatively large array in two dimensions

    Differential spatial modulation for high-rate transmission systems

    Get PDF
    This paper introduces a new differential spatial modulation (DSM) scheme which subsumes both the previously introduced DSM and high-rate spatial modulation (HR-SM) for wireless multiple input multiple output (MIMO) transmission. By combining the codeword design method of the HR-SM scheme with the encoding method of the DSM scheme, we develop a high-rate differential spatial modulation (HR-DSM) scheme equipped with an arbitrary number of transmit antennas that requires channel state information (CSI) neither at the transmitter nor at the receiver. The proposed approach can be applied to any equal energy signal constellations. The bit error rate (BER) performance of the proposed HR-DSM schemes is evaluated by using both theoretical upper bound and computer simulations. It is shown that for the same spectral efficiency and antenna configuration, the proposed HR-DSM outperforms the DSM in terms of bit error rate (BER) performance

    A physical layer network coding based modify-and-forward with opportunistic secure cooperative transmission protocol

    Get PDF
    This paper investigates a new secure relaying scheme, namely physical layer network coding based modify-and-forward (PMF), in which a relay node linearly combines the decoded data sent by a source node with an encrypted key before conveying the mixed data to a destination node. We first derive the general expression for the generalized secrecy outage probability (GSOP) of the PMF scheme and then use it to analyse the GSOP performance of various relaying and direct transmission strategies. The GSOP performance comparison indicates that these transmission strategies offer different advantages depending on the channel conditions and target secrecy rates, and relaying is not always desirable in terms of secrecy. Subsequently, we develop an opportunistic secure transmission protocol for cooperative wireless relay networks and formulate an optimisation problem to determine secrecy rate thresholds (SRTs) to dynamically select the optimal transmission strategy for achieving the lowest GSOP. The conditions for the existence of the SRTs are derived for various channel scenarios

    A secure network coding based modify-and-forward scheme for cooperative wireless relay networks

    Get PDF
    This paper investigates the security at the physical layer of cooperative relay communications. Inspired by the principle of physical-layer network coding (PNC), we propose a new secure relaying scheme, namely secure PNC-based modify-and-forward (SPMF). In the proposed scheme, the relay node linearly combines the decoded data from the source node with an encrypted key before conveying the mixed data to the destination node. As both the linear PNC operation and encrypted key at the relay are unknown to the eavesdropper, the SPMF scheme provides a double security level in the system. Particularly, taking into account the practical scenario of the imperfect knowledge shared between the relay and destination, the secrecy outage probability (SOP) of the proposed SPMF scheme is analysed and evaluated in comparison with modify-and-forward, cooperative jamming, decode-and-forward and direct transmission schemes. The proposed scheme is shown to achieve a performance improvement of up to 3 dB when compared to the conventional schemes under imperfect knowledge of shared information between the nodes

    High-rate groupwise STBC using low-complexity SIC based receiver

    Get PDF
    In this paper, using diagonal signal repetition with Alamouti code employed as building blocks, we propose a high- rate groupwise space-time block code (GSTBC) which can be effectively decoded by a low-complexity successive interference cancellation (SIC) based receiver. The proposed GSTBC and SIC based receiver are jointly designed such that the diversity repetition in a GSTBC can induce the dimension expansion to suppress interfering signals as well as to obtain diversity gain. Our proposed scheme can be easily applied to the case of large number of antennas while keeping a reasonably low complexity at the receiver. It is found that the required minimum number of receive antennas is only two for the SIC based receiver to avoid the error floor in performance. The simulation results show that the proposed GSTBC with SIC based receiver obtains a near maximum likelihood (ML) performance while having a significant performance gain over other codes equipped with linear decoders
    • …
    corecore