15 research outputs found

    Quantum cavitation in liquid 3^3He: dissipation effects

    Get PDF
    We have investigated the effect that dissipation may have on the cavitation process in normal liquid 3^3He. Our results indicate that a rather small dissipation decreases sizeably the quantum-to-thermal crossover temperature T∗T^* for cavitation in normal liquid 3^3He. This is a possible explanation why recent experiments have not yet found clear evidence of quantum cavitation at temperatures below the T∗T^* predicted by calculations which neglect dissipation.Comment: To be published in Physical Review B6

    Cavitation pressure in liquid helium

    Get PDF
    Recent experiments have suggested that, at low enough temperature, the homogeneous nucleation of bubbles occurs in liquid helium near the calculated spinodal limit. This was done in pure superfluid helium 4 and in pure normal liquid helium 3. However, in such experiments, where the negative pressure is produced by focusing an acoustic wave in the bulk liquid, the local amplitude of the instantaneous pressure or density is not directly measurable. In this article, we present a series of measurements as a function of the static pressure in the experimental cell. They allowed us to obtain an upper bound for the cavitation pressure P_cav (at low temperature, P_cav < -2.4 bar in helium 3, P_cav < -8.0 bar in helium 4). From a more precise study of the acoustic transducer characteristics, we also obtained a lower bound (at low temperature, P_cav > -3.0 bar in helium 3, P_cav > - 10.4 bar in helium 4). In this article we thus present quantitative evidence that cavitation occurs at low temperature near the calculated spinodal limit (-3.1 bar in helium 3 and -9.5 bar in helium 4). Further information is also obtained on the comparison between the two helium isotopes. We finally discuss the magnitude of nonlinear effects in the focusing of a sound wave in liquid helium, where the pressure dependence of the compressibility is large.Comment: 11 pages, 9 figure

    Cavitation induced by explosion in a model of ideal fluid

    Full text link
    We discuss the problem of an explosion in the cubic-quintic superfluid model, in relation to some experimental observations. We show numerically that an explosion in such a model might induce a cavitation bubble for large enough energy. This gives a consistent view for rebound bubbles in superfluid and we indentify the loss of energy between the successive rebounds as radiated waves. We compute self-similar solution of the explosion for the early stage, when no bubbles have been nucleated. The solution also gives the wave number of the excitations emitted through the shock wave.Comment: 21 pages,13 figures, other comment

    Cavitation of Electrons Bubbles in Liquid Helium Below saturation Pressure

    Full text link
    We have used a Hartree-type electron-helium potential together with a density functional description of liquid 4^4He and 3^3He to study the explosion of electron bubbles submitted to a negative pressure. The critical pressure at which bubbles explode has been determined as a function of temperature. It has been found that this critical pressure is very close to the pressure at which liquid helium becomes globally unstable in the presence of electrons. It is shown that at high temperatures the capillary model overestimates the critical pressures. We have checked that a commonly used and rather simple electron-helium interaction yields results very similar to those obtained using the more accurate Hartree-type interaction. We have estimated that the crossover temperature for thermal to quantum nucleation of electron bubbles is very low, of the order of 6 mK for 4^4He.Comment: 22 pages, 9 figure

    Cavitation in superfluid helium-4 at low temperature

    No full text
    We have studied the nucleation of bubbles in pure superfluid helium-4 at temperatures down to 65 mK. We have found that the nucleation is a stochastic process, and that at temperatures below 600 mK the nucleation rate is independent of temperature. These results are consistent with the assumption that the nucleation takes place via quantum tunneling
    corecore