31,597 research outputs found
A new model for the double well potential
A new model for the double well potential is presented in the paper. In the
new potential, the exchanging rate could be easily calculated by the
perturbation method in supersymmetric quantum mechanics. It gives good results
whether the barrier is high or sallow. The new model have many merits and may
be used in the double well problem.Comment: 3pages, 3figure
Universal Quantum Degeneracy Point for Superconducting Qubits
The quantum degeneracy point approach [D. Vion et al., Science 296, 886
(2002)] effectively protects superconducting qubits from low-frequency noise
that couples with the qubits as transverse noise. However, low-frequency noise
in superconducting qubits can originate from various mechanisms and can couple
with the qubits either as transverse or as longitudinal noise. Here, we present
a quantum circuit containing a universal quantum degeneracy point that protects
an encoded qubit from arbitrary low-frequency noise. We further show that
universal quantum logic gates can be performed on the encoded qubit with high
gate fidelity. The proposed scheme is robust against small parameter spreads
due to fabrication errors in the superconducting qubits.Comment: 7 pages, 4 figure
The SUMER Lyman-alpha line profile in quiescent prominences
Aims: Out of a novel observing technique, we publish for the first time,
SoHO-SUMER observations of the true spectral line profile of hydrogen
Lyman-alpha in quiescent prominences. With SoHO not being in Earth orbit, our
high-quality data set is free from geocoronal absorption. We study the line
profile and compare it with earlier observations of the higher Lyman lines and
recent model predictions. Methods: We applied the reduced-aperture observing
mode to two prominence targets and started a statistical analysis of the line
profiles in both data sets. In particular, we investigated the shape of the
profile, the radiance distribution and the line shape-to-radiance
interrelation. We also compare Ly-a data to co-temporal 1206 Si III data.
Results: We find that the average profile of Ly-a has a blue-peak dominance and
is more reversed, if the line-of-sight is perpendicular to the field lines. The
contrast of Ly-a prominence emission rasters is very low and the radiance
distribution differs from the log-normal distribution of the disk. Features
seen in the Si III line are not always co-spatial with Ly-a emission.
Conclusions: Our empirical results support recent multi-thread models, which
predict that asymmetries and depths of the self-reversal depend on the
orientation of the prominence axis relative to the line-of-sight.Comment: 4 pages, 7 figures; accepted for publication as A&A lette
Feedback local optimality principle applied to rocket vertical landing VTVL
Vertical landing is becoming popular in the last fifteen years, a technology known under the acronym VTVL, Vertical Takeoff and Vertical Landing [1,2]. The interest in such landing technology is dictated by possible cost reductions [3,4], that impose spaceship’s recycling. The rockets are not generally de- signed to perform landing operations, rather their design is aimed at takeoff operations, guaranteeing a very high forward acceleration to gain the velocity needed to escape the gravitational force. In this paper a new control method based on Feedback Local Optimality Principle, named FLOP is applied to the rocket landing problem. The FLOP belongs to a special class of optimal controllers, developed by the mechatronic and vehicle dynamics lab of Sapienza, named Variational Feedback Controllers - VFC, that are part of an ongoing research and are recently applied in different field: nonlinear system [5], marine and terrestrial autonomous vehicles [6,7,8], multi agents interactions and vibration control [9, 10]. The paper is devoted to show the robustness of the nonlinear controlled system, comparing the performances with the LQR, one of the most acknowledged methods in optimal control
Observations of Subarcsecond Bright Dots in the Transition Region above Sunspots with the Interface Region Imaging Spectrograph
Observations with the Interface Region Imaging Spectrograph (IRIS) have
revealed numerous sub-arcsecond bright dots in the transition region above
sunspots. These bright dots are seen in the 1400\AA{} and 1330\AA{} slit-jaw
images. They are clearly present in all sunspots we investigated, mostly in the
penumbrae, but also occasionally in some umbrae and light bridges. The bright
dots in the penumbrae typically appear slightly elongated, with the two
dimensions being 300--600 km and 250--450 km, respectively. The long sides of
these dots are often nearly parallel to the bright filamentary structures in
the penumbrae but sometimes clearly deviate from the radial direction. Their
lifetimes are mostly less than one minute, although some dots last for a few
minutes or even longer. Their intensities are often a few times stronger than
the intensities of the surrounding environment in the slit-jaw images. About
half of the bright dots show apparent movement with speeds of
10--40~km~s in the radial direction. Spectra of a few bright dots
were obtained and the Si~{\sc{iv}}~1402.77\AA{} line profiles in these dots are
significantly broadened. The line intensity can be enhanced by one to two
orders of magnitude. Some relatively bright and long-lasting dots are also
observed in several passbands of the Atmospheric Imaging Assembly onboard the
Solar Dynamics Observatory, and they appear to be located at the bases of
loop-like structures. Many of these bright dots are likely associated with
small-scale energy release events at the transition region footpoints of
magnetic loops.Comment: 5 figures, will appear in ApJ
Radiance and Doppler shift distributions across the network of the quiet Sun
The radiance and Doppler-shift distributions across the solar network provide
observational constraints of two-dimensional modeling of transition-region
emission and flows in coronal funnels. Two different methods, dispersion plots
and average-profile studies, were applied to investigate these distributions.
In the dispersion plots, we divided the entire scanned region into a bright and
a dark part according to an image of Fe xii; we plotted intensities and Doppler
shifts in each bin as determined according to a filtered intensity of Si ii. We
also studied the difference in height variations of the magnetic field as
extrapolated from the MDI magnetogram, in and outside network. For the
average-profile study, we selected 74 individual cases and derived the average
profiles of intensities and Doppler shifts across the network. The dispersion
plots reveal that the intensities of Si ii and C iv increase from network
boundary to network center in both parts. However, the intensity of Ne viii
shows different trends, namely increasing in the bright part and decreasing in
the dark part. In both parts, the Doppler shift of C iv increases steadily from
internetwork to network center. The average-profile study reveals that the
intensities of the three lines all decline from the network center to
internetwork region. The binned intensities of Si ii and Ne viii have a good
correlation. We also find that the large blue shift of Ne viii does not
coincide with large red shift of C iv. Our results suggest that the network
structure is still prominent at the layer where Ne viii is formed in the quiet
Sun, and that the magnetic structures expand more strongly in the dark part
than in the bright part of this quiet Sun region.Comment: 10 pages,9 figure
Recommended from our members
Experimental study on transcritical Rankine cycle (TRC) using CO2/R134a mixtures with various composition ratios for waste heat recovery from diesel engines
A carbon dioxide (CO2) based mixture was investigated as a promising solution to improve system performance and expand the condensation temperature range of a CO2 transcritical Rankine cycle (C-TRC). An experimental study of TRC using CO2/R134a mixtures was performed to recover waste heat of engine coolant and exhaust gas from a heavy-duty diesel engine. The main purpose of this study was to investigate experimentally the effect of the composition ratio of CO2/R134a mixtures on system performance. Four CO2/R134a mixtures with mass composition ratios of 0.85/0.15, 0.7/0.3, 0.6/0.4 and 0.4/0.6 were selected. The high temperature working fluid was expanded through an expansion valve and then no power was produced. Thus, current research focused on the analysis of measured operating parameters and heat exchanger performance. Heat transfer coefficients of various heat exchangers using supercritical CO2/R134a mixtures were provided and discussed. These data may provide useful reference for cycle optimization and heat exchanger design in application of CO2 mixtures. Finally, the potential of power output was estimated numerically. Assuming an expander efficiency of 0.7, the maximum estimations of net power output using CO2/R134a (0.85/0.15), CO2/R134a (0.7/0.3), CO2/R134a (0.6/0.4) and CO2/R134a (0.4/0.6) are 5.07 kW, 5.45 kW, 5.30 kW, and 4.41 kW, respectively. Along with the increase of R134a composition, the estimation of net power output, thermal efficiency and exergy efficiency increased at first and then decreased. CO2/R134a (0.7/0.3) achieved the maximum net power output at a high expansion inlet pressure, while CO2/R134a (0.6/0.4) behaves better at low pressure
Topology of Entanglement in Multipartite States with Translational Invariance
The topology of entanglement in multipartite states with translational
invariance is discussed in this article. Two global features are foundby which
one can distinguish distinct states. These are the cyclic unit and the
quantised geometric phase. Furthermore the topology is indicated by the
fractional spin. Finally a scheme is presented for preparation of these types
of states in spin chain systems, in which the degeneracy of the energy levels
characterises the robustness of the states with translational invariance.Comment: major revision. accepted by EPJ
Recommended from our members
Preliminary experimental comparison and feasibility analysis of CO2/R134a mixture in Organic Rankine Cycle for waste heat recovery from diesel engines
This paper presents results of a preliminary experimental study of the Organic Rankine Cycle (ORC) using CO2/R134a mixture based on an expansion valve. The goal of the research was to examine the feasibility and effectiveness of using CO2 mixtures to improve system performance and expand the range of condensation temperature for ORC system. The mixture of CO2/R134a (0.6/0.4) on a mass basis was selected for comparison with pure CO2 in both the preheating ORC (P-ORC) and the preheating regenerative ORC (PR-ORC). Then, the feasibility and application potential of CO2/R134a (0.6/0.4) mixture for waste heat recovery from engines was tested under ambient cooling conditions. Preliminary experimental results using an expansion valve indicate that CO2/R134a (0.6/0.4) mixture exhibits better system performance than pure CO2. For PR-ORC using CO2/R134a (0.6/0.4) mixture, assuming a turbine isentropic efficiency of 0.7, the net power output estimation, thermal efficiency and exergy efficiency reached up to 5.30 kW, 10.14% and 24.34%, respectively. For the fitting value at an expansion inlet pressure of 10 MPa, the net power output estimation, thermal efficiency and exergy efficiency using CO2/R134a (0.6/0.4) mixture achieved increases of 23.3%, 16.4% and 23.7%, respectively, versus results using pure CO2 as the working fluid. Finally, experiments showed that the ORC system using CO2/R134a (0.6/0.4) mixture is capable of operating stably under ambient cooling conditions (25.2–31.5 °C), demonstrating that CO2/R134a mixture can expand the range of condensation temperature and alleviate the low-temperature condensation issue encountered with CO2. Under the ambient cooling source, it is expected that ORC using CO2/R134a (0.6/0.4) mixture will improve the thermal efficiency of a diesel engine by 1.9%
- …