166 research outputs found
Non-Gaussian numerical errors versus mass hierarchy
We probe the numerical errors made in renormalization group calculations by
varying slightly the rescaling factor of the fields and rescaling back in order
to get the same (if there were no round-off errors) zero momentum 2-point
function (magnetic susceptibility). The actual calculations were performed with
Dyson's hierarchical model and a simplified version of it. We compare the
distributions of numerical values obtained from a large sample of rescaling
factors with the (Gaussian by design) distribution of a random number generator
and find significant departures from the Gaussian behavior. In addition, the
average value differ (robustly) from the exact answer by a quantity which is of
the same order as the standard deviation. We provide a simple model in which
the errors made at shorter distance have a larger weight than those made at
larger distance. This model explains in part the non-Gaussian features and why
the central-limit theorem does not apply.Comment: 26 pages, 7 figures, uses Revte
Wave Propagation in Stochastic Spacetimes: Localization, Amplification and Particle Creation
Here we study novel effects associated with electromagnetic wave propagation
in a Robertson-Walker universe and the Schwarzschild spacetime with a small
amount of metric stochasticity. We find that localization of electromagnetic
waves occurs in a Robertson-Walker universe with time-independent metric
stochasticity, while time-dependent metric stochasticity induces exponential
instability in the particle production rate. For the Schwarzschild metric,
time-independent randomness can decrease the total luminosity of Hawking
radiation due to multiple scattering of waves outside the black hole and gives
rise to event horizon fluctuations and thus fluctuations in the Hawking
temperature.Comment: 26 pages, 1 Postscript figure, submitted to Phys. Rev. D on July 29,
199
Scaling properties in off equilibrium dynamical processes
In the present paper, we analyze the consequences of scaling hypotheses on
dynamic functions, as two times correlations . We show, under general
conditions, that must obey the following scaling behavior , where the scaling variable is
and , two
undetermined functions. The presence of a non constant exponent
signals the appearance of multiscaling properties in the dynamics.Comment: 6 pages, no figure
Mid-Air Haptic Interfaces for Interactive Digital Signage and Kiosks
European Union’s Horizon 202
Elastic turbulence in curvilinear flows of polymer solutions
Following our first report (A. Groisman and V. Steinberg, \sl Nature , 53 (2000)) we present an extended account of experimental observations of
elasticity induced turbulence in three different systems: a swirling flow
between two plates, a Couette-Taylor (CT) flow between two cylinders, and a
flow in a curvilinear channel (Dean flow). All three set-ups had high ratio of
width of the region available for flow to radius of curvature of the
streamlines. The experiments were carried out with dilute solutions of high
molecular weight polyacrylamide in concentrated sugar syrups. High polymer
relaxation time and solution viscosity ensured prevalence of non-linear elastic
effects over inertial non-linearity, and development of purely elastic
instabilities at low Reynolds number (Re) in all three flows. Above the elastic
instability threshold, flows in all three systems exhibit features of developed
turbulence. Those include: (i)randomly fluctuating fluid motion excited in a
broad range of spatial and temporal scales; (ii) significant increase in the
rates of momentum and mass transfer (compared to those expected for a steady
flow with a smooth velocity profile). Phenomenology, driving mechanisms, and
parameter dependence of the elastic turbulence are compared with those of the
conventional high Re hydrodynamic turbulence in Newtonian fluids.Comment: 23 pages, 26 figure
Open Clusters IC 4665 and Cr 359 and a Probable Birthplace of the Pulsar PSR B1929+10
Based on the epicyclic approximation, we have simulated the motion of the
young open star clusters IC 4665 and Collinder 359. The separation between the
cluster centers is shown to have been minimal 7 Myr ago, 36 pc. We have
established a close evolutionary connection between IC 4665 and the
Scorpius-Centaurus association -- the separation between the centers of these
structures was pc 15 Myr ago. In addition, the center of IC 4665
at this time was near two well-known regions of coronal gas: the Local Bubble
and the North Polar Spur. The star HIP 86768 is shown to be one of the
candidates for a binary (in the past) with the pulsar PSR B1929+10. At the
model radial velocity of the pulsar km s, a close
encounter of this pair occurs in the vicinity of IC 4665 at a time of -1.1 Myr.
At the same time, using currently available data for the pulsar B1929+10 at its
model radial velocity km s, we show that the hypothesis
of Hoogerwerf et al. (2001) about the breakup of the Oph--B1929+10
binary in the vicinity of Upper Scorpius (US) about 0.9 Myr ago is more
plausible.Comment: 19 pages, 8 figure
Inclusive jet cross section in collisions at TeV
The inclusive jet differential cross section has been measured for jet
transverse energies, , from 15 to 440 GeV, in the pseudorapidity region
0.10.7. The results are based on 19.5 pb of data
collected by the CDF collaboration at the Fermilab Tevatron collider. The data
are compared with QCD predictions for various sets of parton distribution
functions. The cross section for jets with GeV is significantly
higher than current predictions based on O() perturbative QCD
calculations. Various possible explanations for the high- excess are
discussed.Comment: 8 pages with 2 eps uu-encoded figures Submitted to Physical Review
Letter
Enchantment in Business Ethics Research
This article draws attention to the importance of enchantment in business ethics research. Starting from a Weberian understanding of disenchantment, as a force that arises through modernity and scientific rationality, we show how rationalist business ethics research has become disenchanted as a consequence of the normalisation of positivist, quantitative methods of inquiry. Such methods absent the relational and lively nature of business ethics research and detract from the ethical meaning that can be generated through research encounters. To address this issue, we draw on the work of political theorist and philosopher, Jane Bennett, using this to show how interpretive qualitative research creates possibilities for enchantment. We identify three opportunities for reenchanting business ethics research related to: (i) moments of novelty or disruption; (ii) deep, meaningful attachments to things studied; and (iii) possibilities for embodied, affective encounters. In conclusion, we suggest that business ethics research needs to recognise and reorient scholarship towards an appreciation of the ethical value of interpretive, qualitative research as a source of potential enchantment
Using an insect mushroom body circuit to encode route memory in complex natural environments
Ants, like many other animals, use visual memory to follow extended routes through complex environments, but it is unknown how their small brains implement this capability. The mushroom body neuropils have been identified as a crucial memory circuit in the insect brain, but their function has mostly been explored for simple olfactory association tasks. We show that a spiking neural model of this circuit originally developed to describe fruitfly (Drosophila melanogaster) olfactory association, can also account for the ability of desert ants (Cataglyphis velox) to rapidly learn visual routes through complex natural environments. We further demonstrate that abstracting the key computational principles of this circuit, which include one-shot learning of sparse codes, enables the theoretical storage capacity of the ant mushroom body to be estimated at hundreds of independent images
- …