97 research outputs found

    Dysregulation of synaptic pruning as a possible link between intestinal microbiota dysbiosis and neuropsychiatric disorders

    Get PDF
    The prenatal and early postnatal stages represent a critical time window for human brain development. Interestingly, this window partly overlaps with the maturation of the intestinal flora (microbiota) that play a critical role in the bidirectional communication between the central and the enteric nervous systems (microbiota-gut-brain axis). The microbial composition has important influences on general health and the development of several organ systems, such as the gastrointestinal tract, the immune system, and also the brain. Clinical studies have shown that microbiota alterations are associated with a wide range of neuropsychiatric disorders including autism spectrum disorder, attention deficit hyperactivity disorder, schizophrenia, and bipolar disorder. In this review, we dissect the link between these neuropsychiatric disorders and the intestinal microbiota by focusing on their effect on synaptic pruning, a vital process in the maturation and establishing efficient functioning of the brain. We discuss in detail how synaptic pruning is dysregulated differently in the aforementioned neuropsychiatric disorders and how it can be influenced by dysbiosis and/or changes in the intestinal microbiota composition. We also review that the improvement in the intestinal microbiota composition by a change in diet, probiotics, prebiotics, or fecal microbiota transplantation may play a role in improving neuropsychiatric functioning, which can be at least partly explained via the optimization of synaptic pruning and neuronal connections. Altogether, the demonstration of the microbiota's influence on brain function via microglial-induced synaptic pruning addresses the possibility that the manipulation of microbiota-immune crosstalk represents a promising strategy for treating neuropsychiatric disorders

    How to achieve synergy between medical education and cognitive neuroscience? An exercise on prior knowledge in understanding

    Get PDF
    A major challenge in contemporary research is how to connect medical education and cognitive neuroscience and achieve synergy between these domains. Based on this starting point we discuss how this may result in a common language about learning, more educationally focused scientific inquiry, and multidisciplinary research projects. As the topic of prior knowledge in understanding plays a strategic role in both medical education and cognitive neuroscience it is used as a central element in our discussion. A critical condition for the acquisition of new knowledge is the existence of prior knowledge, which can be built in a mental model or schema. Formation of schemas is a central event in student-centered active learning, by which mental models are constructed and reconstructed. These theoretical considerations from cognitive psychology foster scientific discussions that may lead to salient issues and questions for research with cognitive neuroscience. Cognitive neuroscience attempts to understand how knowledge, insight and experience are established in the brain and to clarify their neural correlates. Recently, evidence has been obtained that new information processed by the hippocampus can be consolidated into a stable, neocortical network more rapidly if this new information fits readily into a schema. Opportunities for medical education and medical education research can be created in a fruitful dialogue within an educational multidisciplinary platform. In this synergetic setting many questions can be raised by educational scholars interested in evidence-based education that may be highly relevant for integrative research and the further development of medical education

    From ECHo-1k to ECHo-100k:Optimization of High-Resolution Metallic Magnetic Calorimeters with Embedded 163Ho^{163}Ho for Neutrino Mass Determination

    No full text
    The ECHo experiment aims at determining the effective electron neutrino mass by analyzing the endpoint of the Ho-163 electron capture spectrum. High energy resolution detectors with a well-tailored detector response are the essential ingredient for the success of the ECHo experiment. Metallic magnetic calorimeter arrays enclosing Ho-163 have been chosen for the ECHo experiment. The first MMC array, ECHo-1k, showed excellent performances with an average energy resolution of 5.5 eV FWHM @ 5.9 keV. Based on the results obtained with the ECHo-1k array, optimization studies have paved the way towards a new detector design for the next experimental phase, ECHo-100k. The ECHo-100k chip features an optimized single pixel design to improve the detector performance as well as an upgraded on-chip thermalization layout. The newly fabricated ECHo-100k detectors have been fully characterized at room temperature, at 4 K and at millikelvin temperature. The obtained results show that the ECHo-100k array achieved the expected performance with an average energy resolution of 3.5 eV FWHM @ 5.9 keV, fulfilling the requirements for the ECHo-100k experimental phase
    • 

    corecore