106 research outputs found

    Magnetic and electric properties in the distorted tetrahedral spin chain system Cu3Mo2O9

    Full text link
    We study the multiferroic properties in the distorted tetrahedral quasi-one dimensional spin system Cu3_3Mo2_2O9_9, in which the effects of the low dimensionality and the magnetic frustration are expected to appear simultaneously. We clarify that the antiferromagnetic order is formed together with ferroelectric properties at TN=7.9T_{\rm N}=7.9 K under zero magnetic field and obtain the magnetic-field-temperature phase diagram by measuring dielectric constant and spontaneous electric polarization. It is found that the antiferromagnetic phase possesses a spontaneous electric polarization parallel to the c axis when the magnetic field HH is applied parallel to the a axis. On the other hand, there are three different ferroelectric phases in the antiferromagnetic phase for HH parallel to the c axis.Comment: 4 pages, 3 figures, LT26 proceedings, accepted for publication in J. Phys.: Conf. Se

    Longitudinal magnetic excitation in KCuCl3 studied by Raman scattering under hydrostatic pressures

    Full text link
    We measure Raman scattering in an interacting spin-dimer system KCuCl3 under hydrostatic pressures up to 5 GPa mediated by He gas. In the pressure-induced quantum phase, we observe a one-magnon Raman peak, which originates from the longitudinal magnetic excitationand is observable through the second-order exchange interaction Raman process. We report the pressure dependence of the frequency, halfwidth and Raman intensity of this mode.Comment: 4 pages, 3 figures, inpress in JPCS as a proceeding of LT2

    Spin fluctuations in CuGeO3_3 probed by light scattering

    Full text link
    We have measured temperature dependence of low-frequency Raman spectra in CuGeO3_3, and have observed the quasi-elastic scattering in the (c,c)(c,c) polarization above the spin-Peierls transition temperature. We attribute it to the fluctuations of energy density in the spin system. The magnetic specific heat and an inverse of the magnetic correlation length can be derived from the quasi-elastic scattering. The inverse of the magnetic correlation length is proportional to (T−TSP)1/2(T-T_{SP})^{1/2} at high temperatures. We compare the specific heat with a competing-JJ model. This model cannot explain quantitatively both the specific heat and the magnetic susceptibility with the same parameters. The origin of this discrepancy is discussed.Comment: 17 pages, REVTeX, 5 Postscript figures; in press in PR

    Magnetic and Dielectric Properties in Multiferroic Cu3Mo2O9 under High Magnetic Fields

    Full text link
    The magnetic and dielectric properties under high magnetic fields are studied in the single crystal of Cu3Mo2O9. This multiferroic compound has distorted tetrahedral spin chains. The effects of the quasi-one dimensionality and the geometrical spin frustration are expected to appear simultaneously. We measure the magnetoelectric current and the differential magnetization under the pulsed magnetic field up to 74 T. We also measure the electric polarization versus the electric field curve/loop under the static field up to 23 T. Dielectric properties change at the magnetic fields where the magnetization jumps are observed in the magnetization curve. Moreover, the magnetization plateaus are found at high magnetic fields.Comment: 6 pages, 3 figures, in press in JPS Conf. Proc. as a part of SCES2013 Proceeding

    Spin-phonon coupled modes in the incommensurate phases of doped CuGeO3_{3}

    Full text link
    The doping effect of the folded phonon mode at 98 cm−1^{-1} was investigated on the Si-doped CuGeO3_3 by magneto-optical measurements in far-infrared (FIR) region under high magnetic field. The folded phonon mode at 98 cm−1^{-1} appears not only in the dimerized (D) phase but also in the dimerized-anitiferromagnetic (DAF) phase on the doped CuGeO3_3. The splitting was observed in the incommensurate (IC) phase and the antiferromagnetically ordered incommensurate (IAF) phase above HCH_C. The split-off branches exhibit different field dependence from that of the pure CuGeO3_3 in the vicinity of HCH_C, and the discrepancy in the IAF phase is larger than that in the IC phase. It is caused by the interaction between the solitons and the impurities.Comment: 7 pages, 4 figures, resubmitted to Phys. Rev.

    Confirmation of a one-dimensional spin-1/2 Heisenberg system with ferromagnetic first-nearest-neighbor and antiferromagnetic second-nearest-neighbor interactions in Rb2{}_{2}Cu2{}_{2}Mo3{}_{3}O12{}_{12}

    Full text link
    We have investigated magnetic properties of Rb2_2Cu2_2Mo3_3O12_{12} powder. Temperature dependence of magnetic susceptibility and magnetic-field dependence of magnetization have shown that this cuprate is a model compound of a one-dimensional spin-1/2 Heisenberg system with ferromagnetic first-nearest-neighbor (1NN) and antiferromagnetic second-nearest-neighbor (2NN) competing interactions (competing system). Values of the 1NN and 2NN interactions are estimated as J1=−138J_1 = -138 K and J2=51J_2 = 51 K (α≡J2/J1=−0.37\alpha \equiv J_2 / J_1 = -0.37). This value of α\alpha suggests that the ground state is a spin-singlet incommensurate state. In spite of relatively large J1J_1 and J2J_2, no magnetic phase transition appears down to 2 K, while an antiferromagnetic transition occurs in other model compounds of the competing system with ferromagnetic 1NN interaction. For that reason, Rb2_2Cu2_2Mo3_3O12_{12} is an ideal model compound to study properties of the incommensurate ground state that are unconfirmed experimentally.Comment: 6 pages, 4 figure

    Spin gap behavior and charge ordering in \alpha^{\prime}-NaV_2O_5 probed by light scattering

    Full text link
    We present a detailed analysis of light scattering experiments performed on the quarter-filled spin ladder compound α′\alpha^\prime-NaV2_{2}O5_{5} for the temperature range 5 K≤\leT≤\le300 K. This system undergoes a phase transition into a singlet ground state at T=34 K accompanied by the formation of a super structure. For T≤\leq34 K several new modes were detected. Three of these modes are identified as magnetic bound states. Experimental evidence for charge ordering on the V sites is detected as an anomalous shift and splitting of a V-O vibration at 422 cm−1^{-1} for temperatures above 34 K. The smooth and crossover-like onset of this ordering at TCO_{\rm CO}= 80 K is accompanied by pretransitional fluctuations both in magnetic and phononic Raman scattering. It resembles the effect of stripe order on the super structure intensities in La2_2NiO4+δ_{4+\delta}.Comment: 36 pages, 11 figures, accepted for publication in PRB (sept.99

    Electric polarization induced by Neel order without magnetic superlattice: experimental study of Cu3Mo2O9 and numerical study of a small spin cluster

    Full text link
    We clarify that the antiferromagnetic order in the distorted tetrahedral quasi-one dimensional spin system induces electric polarizations. In this system, the effects of the low dimensionality and the magnetic frustration are expected to appear simultaneously. We obtain the magnetic-field-temperature phase diagram in Cu3Mo2O9 by studying the dielectric constant and the spontaneous electric polarization. Around the tricritical point at 10 T and 8 K, the change of the direction in the electric polarization causes a colossal magnetocapacitance. We calculate the charge redistribution in the small spin cluster consisting of two magnetic tetrahedra to demonstrate the electric polarization induced by the antiferromagnetism.Comment: 10 pages 6 figures, in press in J. Phys. Soc. Jp
    • …
    corecore