336 research outputs found

    Gamow-Teller sum rule in relativistic nuclear models

    Full text link
    Relativistic corrections are investigated to the Gamow-Teller(GT) sum rule with respect to the difference between the ÎČ−\beta_- and ÎČ+\beta_+ transition strengths in nuclei. Since the sum rule requires the complete set of the nuclear states, the relativistic corrections come from the anti-nucleon degrees of freedom. In the relativistic mean field approximation, the total GT strengths carried by the nucleon sector is quenched by about 12% in nuclear matter, while by about 8% in finite nuclei, compared to the sum rule value. The coupling between the particle-hole states with the nucleon-antinucleon states is also discussed with the relativistic random phase approximation, where the divergence of the response function is renormalized with use of the counter terms in the Lagrangian. It is shown that the approximation to neglect the divergence, like the no-sea approximation extensively used so far, is unphysical, from the sum-rule point of view.Comment: 12 pages, Brief review for Mod. Phys. Lett. A, using ws-mpla.cl

    Sum Rules of the Multiple Giant Dipole States

    Full text link
    Various sum rules for multiple giant dipole resonance states are derived. For the triple giant dipole resonance states, the energy-weighted sum of the transition strengths requires a model to be related to those of the single and double giant dipole resonance states. It is also shown that the non-diagonal matrix elements of the double commutator between the dipole operator and the nuclear Hamiltonian give useful identities for the excitation energy and transition strength of each excited state. Using those identities, the relationship between width of the single dipole state and those of the multiple ones is qualitatively discussed.Comment: 8 pages, 1 figure, using PTPTeX styl

    The Gamow-Teller States in Relativistic Nuclear Models

    Full text link
    The Gamow-Teller(GT) states are investigated in relativistic models. The Landau-Migdal(LM) parameter is introduced in the Lagrangian as a contact term with the pseudo-vector coupling. In the relativistic model the total GT strength in the nucleon space is quenched by about 12% in nuclear matter and by about 6% in finite nuclei, compared with the one of the Ikeda-Fujii-Fujita sum rule. The quenched amount is taken by nucleon-antinucleon excitations in the time-like region. Because of the quenching, the relativistic model requires a larger value of the LM parameter than non-relativistic models in describing the excitation energy of the GT state. The Pauli blocking terms are not important for the description of the GT states.Comment: REVTeX4, no figure

    High-K Precession modes: Axially symmetric limit of wobbling motion

    Full text link
    The rotational band built on the high-K multi-quasiparticle state can be interpreted as a multi-phonon band of the precession mode, which represents the precessional rotation about the axis perpendicular to the direction of the intrinsic angular momentum. By using the axially symmetric limit of the random-phase-approximation (RPA) formalism developed for the nuclear wobbling motion, we study the properties of the precession modes in 178^{178}W; the excitation energies, B(E2) and B(M1) values. We show that the excitations of such a specific type of rotation can be well described by the RPA formalism, which gives a new insight to understand the wobbling motion in the triaxial superdeformed nuclei from a microscopic view point.Comment: 14 pages, 8 figures (Spelling of the authors name was wrong at the first upload, so it is corrected

    Variation of hadron masses in nuclear matter in the relativistic Hartree approximation

    Full text link
    We study the modification of hadron masses due to the vacuum polarization using the chiral sigma model, which is extended to generate the ω\omega meson mass by the sigma condensation in the vacuum in the same way as the nucleon mass. The results obtained in the chiral sigma model are compared with those obtained in the Walecka model which includes σ\sigma and ω\omega mesons in a non-chiral fashion. It is shown that both the nucleon mass and the ω\omega meson mass decrease in nuclear medium, while the σ\sigma meson mass increases at finite density in the chiral sigma model.Comment: 10 pages, 2 figures, accepted for publication in Nucl.Phys.

    Causality in relativistic many body theory

    Get PDF
    The stability of the nuclear matter system with respect to density fluctuations is examined exploring in detail the pole structure of the electro-nuclear response functions. Making extensive use of the method of dispersion integrals we calculate the full polarization propagator not only for real energies in the spacelike and timelike regime but also in the whole complex energy plane. The latter proved to be necessary in order to identify unphysical causality violating poles which are the consequence of a neglection of vacuum polarization. On the contrary it is shown that Dirac sea effects stabilize the nuclear matter system shifting the unphysical pole from the upper energy plane back to the real axis. The exchange of strength between these real timelike collective excitations and the spacelike energy regime is shown to lead to a reduction of the quasielastic peak as it is seen in electron scattering experiments. Neglecting vacuum polarization one also obtains a reduction of the quasielastic peak but in this case the strength is partly shifted to the causality violating pole mentioned above which consequently cannot be considered as a physical reliable result. Our investigation of the response function in the energy region above the threshold of nucleon anti-nucleon production leads to another remarkable result. Treating the nucleons as point-like Dirac particles we show that for any isospin independent NN-interaction RPA-correlations provide a reduction of the production amplitude for ppˉp\bar p-pairs by a factor 2.Comment: 19 pages Latex including 12 postscript figure

    The mean energy, strength and width of triple giant dipole resonances

    Get PDF
    We investigate the mean energy, strength and width of the triple giant dipole resonance using sum rules.Comment: 12 page

    Electromagnetic form factors of the bound nucleon

    Get PDF
    We calculate electromagnetic form factors of the proton bound in specified orbits for several closed shell nuclei. The quark structure of the nucleon and the shell structure of the finite nuclei are given by the QMC model. We find that orbital electromagnetic form factors of the bound nucleon deviate significantly from those of the free nucleon.Comment: 12 pages including 4 ps figure
    • 

    corecore