258 research outputs found

    Legal Malpractice Statutes of Limitations: A Critical Analysis of a Burgeoning Crisis

    Get PDF
    Surprisingly little has been written on the law of legal malpractice. Even more disturbing is the fact that there is little analytical writing to help guide the courts and bar in this area. The analysis and recommendations contained in this article are intended as a basis in developing rules for statutes of limitations in legal malpractice actions that meet the needs of the parties, the test of fundamental fairness, and evoke a genuine sense of confidence in society

    Contributions to the History of Hydrastis Canadensis (Goldenseal) in Ohio

    Get PDF
    Author Institution: Department of Pharmacognosy, College of Pharmacy, Ohio Northern University, Ada, Ohi

    Characterizing the degradation of alginate hydrogel for use in multilumen scaffolds for spinal cord repair

    Full text link
    Alginate was studied as a degradable nerve guidance scaffold material in vitro and in vivo. In vitro degradation rates were determined using rheology to measure the change in shear modulus vs time. The shear modulus decreased from 155 kPa to 5 kPa within 2 days; however, alginate samples maintained their superficial geometry for over 28 days. The degradation behavior was supported by materials characterization data showing alginate consisted of high internal surface area (400 m2/g), which likely facilitated the release of cross‐linking cations resulting in the rapid decrease in shear modulus. To assess the degradation rate in vivo, multilumen scaffolds were fabricated using a fiber templating technique. The scaffolds were implanted in a 2‐mm‐long T3 full transection rodent spinal cord lesion model for 14 days. Although there was some evidence of axon guidance, in general, alginate scaffolds degraded before axons could grow over the 2‐mm‐long lesion. Enabling alginate‐based scaffolds for nerve repair will likely require approaches to slow its degradation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 611–619, 2016.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137597/1/jbma35600.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137597/2/jbma35600_am.pd

    Role of the α1 blocker doxazosin in alcoholism: a proof-of-concept randomized controlled trial

    Get PDF
    Evidence suggests that the norepinephrine system represents an important treatment target for alcohol dependence (AD) and the α1-blocker prazosin may reduce alcohol drinking in rodents and alcoholic patients. The α1-blocker doxazosin demonstrates a more favorable pharmacokinetic profile than prazosin, but has never been studied for AD. A double-blind placebo-controlled randomized clinical trial was conducted in AD individuals seeking outpatient treatment. Doxazosin or matched placebo was titrated to 16 mg/day (or maximum tolerable dose). Drinks per week (DPW) and heavy drinking days (HDD) per week were the primary outcomes. Family history density of alcoholism (FHDA), severity of AD and gender were a priori moderators. Forty-one AD individuals were randomized, 30 (doxazosin = 15) completed the treatment phase and 28 (doxazosin = 14) also completed the follow-up. There were no significant differences between groups on DPW and HDD per week. With FHDA as a moderator, there were significant FHDA × medication interactions for both DPW (pcorrected = 0.001, d = 1.18) and HDD (pcorrected = 0.00009, d = 1.30). Post hoc analyses revealed that doxazosin significantly reduced alcohol drinking in AD patients with high FHDA and by contrast increased drinking in those with low FHDA. Doxazosin may be effective selectively in AD patients with high FHDA. This study provides preliminary evidence for personalized medicine using α1-blockade to treat AD. However, confirmatory studies are required

    Peripheral nerve growth within a hydrogel microchannel scaffold supported by a kink‐resistant conduit

    Full text link
    Nerve repair in several mm‐long nerve gaps often requires an interventional technology. Microchannel scaffolds have proven effective for bridging nerve gaps and guiding axons in the peripheral nervous system (PNS). Nonetheless, fabricating microchannel scaffolds at this length scale remains a challenge and/or is time consuming and cumbersome. In this work, a simple computer‐aided microdrilling technique was used to fabricate 10 mm‐long agarose scaffolds consisting of 300 ”m‐microchannels and 85 ”m‐thick walls in less than an hour. The agarose scaffolds alone, however, did not exhibit adequate stiffness and integrity to withstand the mechanical stresses during implantation and suturing. To provide mechanical support and enable suturing, poly caprolactone (PCL) conduits were fabricated and agarose scaffolds were placed inside. A modified salt‐leaching technique was developed to introduce interconnected porosity in PCL conduits to allow for tuning of the mechanical properties such as elastic modulus and strain to failure. It was shown that the PCL conduits were effective in stabilizing the agarose scaffolds in 10 mm‐long sciatic nerve gaps of rats for at least 8 weeks. Robust axon ingress and Schwann cell penetration were observed within the microchannel scaffolds without using growth factors. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3392–3399, 2017.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139110/1/jbma36186_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139110/2/jbma36186.pd
    • 

    corecore