590 research outputs found
On DLA's η
In his pioneering 1961 paper on seismic anisotropy in a layered earth, Don L. Anderson (hereafter referred to as DLA) introduced a parameter often referred to in global seismology as η without providing any reasoning. This note hopes to clarify the significance of η in the context of the dependence of body wave velocities in a transversely isotropic system on the angle of incidence, and also its relation with the other well-known anisotropic parameters introduced by Leon Thomsen in 1986
Elastic energy of polyhedral bilayer vesicles
In recent experiments [M. Dubois, B. Dem\'e, T. Gulik-Krzywicki, J.-C.
Dedieu, C. Vautrin, S. D\'esert, E. Perez, and T. Zemb, Nature (London) Vol.
411, 672 (2001)] the spontaneous formation of hollow bilayer vesicles with
polyhedral symmetry has been observed. On the basis of the experimental
phenomenology it was suggested [M. Dubois, V. Lizunov, A. Meister, T.
Gulik-Krzywicki, J. M. Verbavatz, E. Perez, J. Zimmerberg, and T. Zemb, Proc.
Natl. Acad. Sci. U.S.A. Vol. 101, 15082 (2004)] that the mechanism for the
formation of bilayer polyhedra is minimization of elastic bending energy.
Motivated by these experiments, we study the elastic bending energy of
polyhedral bilayer vesicles. In agreement with experiments, and provided that
excess amphiphiles exhibiting spontaneous curvature are present in sufficient
quantity, we find that polyhedral bilayer vesicles can indeed be energetically
favorable compared to spherical bilayer vesicles. Consistent with experimental
observations we also find that the bending energy associated with the vertices
of bilayer polyhedra can be locally reduced through the formation of pores.
However, the stabilization of polyhedral bilayer vesicles over spherical
bilayer vesicles relies crucially on molecular segregation of excess
amphiphiles along the ridges rather than the vertices of bilayer polyhedra.
Furthermore, our analysis implies that, contrary to what has been suggested on
the basis of experiments, the icosahedron does not minimize elastic bending
energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for
large polyhedron sizes, the snub dodecahedron and the snub cube both have lower
total bending energies than the icosahedron
Coarsening Dynamics of a One-Dimensional Driven Cahn-Hilliard System
We study the one-dimensional Cahn-Hilliard equation with an additional
driving term representing, say, the effect of gravity. We find that the driving
field has an asymmetric effect on the solution for a single stationary
domain wall (or `kink'), the direction of the field determining whether the
analytic solutions found by Leung [J.Stat.Phys.{\bf 61}, 345 (1990)] are
unique. The dynamics of a kink-antikink pair (`bubble') is then studied. The
behaviour of a bubble is dependent on the relative sizes of a characteristic
length scale , where is the driving field, and the separation, ,
of the interfaces. For the velocities of the interfaces are
negligible, while in the opposite limit a travelling-wave solution is found
with a velocity . For this latter case () a set of
reduced equations, describing the evolution of the domain lengths, is obtained
for a system with a large number of interfaces, and implies a characteristic
length scale growing as . Numerical results for the domain-size
distribution and structure factor confirm this behavior, and show that the
system exhibits dynamical scaling from very early times.Comment: 20 pages, revtex, 10 figures, submitted to Phys. Rev.
Comparison of P-, SV- and SH-wave velocity models below Japan and Northeast China
The recent deployment of the NECESSArray seismic network in Northeast China has allowed new insights on the velocity structure of this formerly poorly resolved area. This experiment has brought new data to debate about the geodynamical context in this region (stagnant slab, origin of intraplate volcanoes, ...). We use a more efficient method for the measurement of travel time residuals by cross-correlating observed and synthetic waveforms. Synthetic seismograms are convolved with high-frequency source-time functions inverted along with focal depths, following a simulated annealing approach. Thus, resulting modeled waveforms take more accurately account for the source effects. The method is used to perform measurements on direct P, SV and SH phases extracted from, respectively, vertical, radial and transverse band-pass-filtered records from NECESSArray and F-NET seismological networks. We finally invert the resulting datasets in order to obtain P-, SV- and SH-wave velocity models. To do so, we use a fast and efficient inversion method using ray theory. Observed structures in the three tomographic models show a very good geographical coherency. Nevertheless, some differences are observed below Songliao basin and Changbaishan volcanoes between, on the one side, P and SV models, and, on the other side, SH model. By measuring velocity ratios, we discuss anisotropy and thermal/compositional origin of these velocity anomalies
Dispersive stabilization of the inverse cascade for the Kolmogorov flow
It is shown by perturbation techniques and numerical simulations that the
inverse cascade of kink-antikink annihilations, characteristic of the
Kolmogorov flow in the slightly supercritical Reynolds number regime, is halted
by the dispersive action of Rossby waves in the beta-plane approximation. For
beta tending to zero, the largest excited scale is proportional to the
logarithm of one over beta and differs strongly from what is predicted by
standard dimensional phenomenology which ignores depletion of nonlinearity.Comment: 4 pages, LATEX, 3 figures. v3: revised version with minor correction
Nanomechanical structures with 91 MHz resonance frequency fabricated by local deposition and dry etching
We report an all-dry, two-step, surface nanoengineering method to fabricate nanomechanical elements without photolithography. It is based on the local deposition through a nanostencil of a well-defined aluminum pattern onto a silicon/silicon-nitride substrate, followed by plasma etching to release the structures. The suspended 100-nm-wide, 2-mum-long, and 300-nm-thick nanolevers and nanobridges have natural resonance frequencies of 50 and 91 MHz, respectively. The fabrication method is scalable to a full wafer and allows for a variety of materials to be structured on arbitrary surfaces, thus opening new types of nanoscale mechanical systems
Activated c-SRC in ductal carcinoma in situ correlates with high tumour grade, high proliferation and HER2 positivity
Overexpression and/or activity of c-Src non-receptor tyrosine kinase is associated with progression of several human epithelial cancers including breast cancer. c-Src activity in ‘pure' ductal carcinoma in situ (DCIS) was measured to assess whether this predicts recurrence and/or correlates with HER2 expression and other clinical parameters. Activated c-Src levels were evaluated in DCIS biopsies from 129 women, with median follow-up at 60 months. High levels of activated c-Src correlated with HER2 positivity, high tumour grade, comedo necrosis and elevated epithelial proliferation. In univariate analysis, high activated c-Src level associated with lower recurrence-free survival at 5 years (P=0.011). Thus, high c-Src activity may identify a subset of DCIS with high risk of recurrence or progression to invasive cancer where therapeutics targeting c-Src may benefit this patient subset
- …