

ERI, University of Tokyo

UNIVERSITY OF TOKYO

Comparison of *P*-, *SV*- and *SH*-wave velocity models below Japan and Northeast China

日本及び中国東北部下のP波・SV波・SH波速度構 造の比較

Fall Meeting of the Seismological Society of Japan, October 8th, 2013

Introduction

NorthEast China Extended SeiSmic Array (NECESSArray)

M. Obayashi (JpGU, 2013) : Gap in the stagnant slab

S. Grand (JpGU, 2013) : Plume in the gap

Measurements of traveltime residuals

Comparison of P- and S-wave velocity models

Comparison of SV- and SH-wave velocity models

1. Measurements of traveltime residuals

Station-event configuration

80 teleseismic events recorded by 121 temporary stations from NECESSArray (**YP**) deployment, 74 permanent stations from F-NET (**BO**) network, and 24 stations from other permanent global networks (**JP, IU, G, ...**)

1. Measurements of traveltime residuals

Multi-frequency traveltime residuals

Cross-correlation of observed and synthetic waveforms in a frequency-dependent time window designed from the synthetic's envelop amplitude around the theoretical arrival of the seismic phase of interest

Synthetic waveforms include accurate source parameters (depth and HF source-time function) determined by SAWIB (*Garcia et al., 2013*)

1. Measurements of traveltime residuals

Distributions of traveltime residuals

emitlevent to etnemeruseeM eleubies

Comparison of *P*- and S-wave velocity models

Comparison of SV- and SH-wave velocity models

2. Comparison of P- and S-wave models

Traveltime maps

Great coherency in the maps (1° bins) of traveltime residuals between measurements on direct *P*- (left) and *S*-waves (right), with $\delta \tau_{_S} = \langle \delta \tau_{_{SV}}, \delta \tau_{_{SH}} \rangle$

Inversion method

G m = d

d: relative (event's mean removed) traveltime residuals

G: length of 1-D rays traced in ak135 (*Kennett et al., 1995*), inside a global irregular grid designed from hitcount

m: inverted using LSQR method (Paige & Saunders, 1982)

2. Comparison of P- and S-wave models

Tomographic models

Very good spatial coherency between the *P*- and *S*-wave velocity models, also in global agreement with the results from Prs. Obayashi and Grand

2. Comparison of P- and S-wave models

Vertical cross-sections

Observation of a plume-like anomaly dipping towards West below Changbaishan area, as well as another one dipping towards East

emitlevent to etnemenueselli entitle entit entitle ent

Comparison of P- and S-wave velocity models

Comparison of SV- and SH-wave velocity models

Tomographic models

Consistency of the two models in the upper mantle, some changes appear below 660 km

3. Comparison of SV- and SH-wave models

Vertical cross-sections

The Western plume-like anomaly is more clearly observed in *SH* model than in *SV* model

Conclusions

S. Grand:
Upwelling scenario

Changbaishan

Changbaishan

Sub-slab hot material?

Stagnant Slab

Return flow?

- We have built reliable models for P-, SVand SH-wave velocity by using the same data processing and inversion scheme
- We could detect a plume-like low-velocity anomaly rising westward from a depth of 660 km to the Changbaishan area, as expected from previous studies
- We also detected another anomaly rising eastward from a shallower depth to the Changbaishan area, which can be interpreted as another mantle upwelling joining the previous one below the volcanic area
- Future work: inversion including Obayashi's model as the initial model

どうもありがとうございました!!

Principal references

- M. Obayashi, JpGU Meeting 2013, oral communication
- S. Grand, JpGU Meeting 2013, oral communication
- L. Schardong, S. Chevrot & R. Garcia, in preparation
- R. Garcia, L. Schardong & S. Chevrot (2013), *A nonlinear method to estimate source parameters, amplitude and traveltimes of teleseismic body waves*, BSSA, **103**
- C. Paige & M. Saunders (1982), LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8
- B. Kennett, E. Engdahl, & R. Buland (1995), Constraints on seismic velocities in the Earth from traveltimes, GJI, 122

Supplementary material

Resolution tests for SV and SH

