6,688 research outputs found

    Type I superconductivity in the Dirac semimetal PdTe2

    Full text link
    The superconductor PdTe2_2 was recently classified as a Type II Dirac semimetal, and advocated to be an improved platform for topological superconductivity. Here we report magnetic and transport measurements conducted to determine the nature of the superconducting phase. Surprisingly, we find that PdTe2_2 is a Type I superconductor with Tc=1.64T_c = 1.64 K and a critical field μ0Hc(0)=13.6\mu_0 H_c (0) = 13.6 mT. Our crystals also exhibit the intermediate state as demonstrated by the differential paramagnetic effect. For H>HcH > H_c we observe superconductivity of the surface sheath. This calls for a close examination of superconductivity in PdTe2_2 in view of the presence of topological surface states.Comment: 5 page

    Energy conditions in f(R) gravity and Brans-Dicke theories

    Full text link
    The equivalence between f(R) gravity and scalar-tensor theories is invoked to study the null, strong, weak and dominant energy conditions in Brans-Dicke theory. We consider the validity of the energy conditions in Brans-Dicke theory by invoking the energy conditions derived from a generic f(R) theory. The parameters involved are shown to be consistent with an accelerated expanding universe.Comment: 9 pages, 1 figure, to appear in IJMP

    Muon spin rotation study of the topological superconductor SrxBi2Se3

    Get PDF
    We report transverse-field (TF) muon spin rotation experiments on single crystals of the topological superconductor Srx_xBi2_2Se3_3 with nominal concentrations x=0.15x=0.15 and 0.180.18 (Tc3T_c \sim 3 K). The TF spectra (B=10B= 10 mT), measured after cooling to below TcT_c in field, did not show any additional damping of the muon precession signal due to the flux line lattice within the experimental uncertainty. This puts a lower bound on the magnetic penetration depth λ2.3 μ\lambda \geq 2.3 ~\mum. However, when we induce disorder in the vortex lattice by changing the magnetic field below TcT_c a sizeable damping rate is obtained for T0T \rightarrow 0. The data provide microscopic evidence for a superconducting volume fraction of 70 %\sim 70~ \% in the x=0.18x=0.18 crystal and thus bulk superconductivity.Comment: 6 pages, includes 4 figure

    Superconductivity under pressure in the Dirac semimetal PdTe2

    Full text link
    The Dirac semimetal PdTe2_2 was recently reported to be a type-I superconductor (Tc=T_c = 1.64 K, μ0Hc(0)=13.6\mu_0 H_c (0) = 13.6 mT) with unusual superconductivity of the surface sheath. We here report a high-pressure study, p2.5p \leq 2.5 GPa, of the superconducting phase diagram extracted from ac-susceptibility and transport measurements on single crystalline samples. Tc(p)T_c (p) shows a pronounced non-monotonous variation with a maximum Tc=T_c = 1.91 K around 0.91 GPa, followed by a gradual decrease to 1.27 K at 2.5 GPa. The critical field of bulk superconductivity in the limit T0T \rightarrow 0, Hc(0,p)H_c(0,p), follows a similar trend and consequently the Hc(T,p)H_c(T,p)-curves under pressure collapse on a single curve: Hc(T,p)=Hc(0,p)[1(T/Tc(p))2]H_c(T,p)=H_c(0,p)[1-(T/T_c(p))^2]. Surface superconductivity is robust under pressure as demonstrated by the large superconducting screening signal that persists for applied dc-fields Ha>HcH_a > H_c. Surprisingly, for p1.41p \geq 1.41 GPa the superconducting transition temperature at the surface TcST_c^S is larger than TcT_c of the bulk. Therefore surface superconductivity may possibly have a non-trivial nature and is connected to the topological surface states detected by ARPES. We compare the measured pressure variation of TcT_c with recent results from band structure calculations and discuss the importance of a Van Hove singularity.Comment: manuscript 9 pages with 8 figures + supplemental material 3 pages with 6 figure

    Twilight for the energy conditions?

    Full text link
    The tension, if not outright inconsistency, between quantum physics and general relativity is one of the great problems facing physics at the turn of the millennium. Most often, the problems arising in merging Einstein gravity and quantum physics are viewed as Planck scale issues (10^{19} GeV, 10^{-34} m, 10^{-45} s), and so safely beyond the reach of experiment. However, over the last few years it has become increasingly obvious that the difficulties are more widespread: There are already serious problems of deep and fundamental principle at the semi-classical level, and worse, certain classical systems (inspired by quantum physics, but in no sense quantum themselves) exhibit seriously pathological behaviour. One manifestation of these pathologies is in the so-called ``energy conditions'' of general relativity. Patching things up in the gravity sector opens gaping holes elsewhere; and some ``fixes'' are more radical than the problems they are supposed to cure.Comment: Honourable mention in the 2002 Gravity Research Foundation essay contest. 12 pages. Plain LaTeX 2

    Brans-Dicke cylindrical wormholes

    Full text link
    Static axisymmetric thin-shell wormholes are constructed within the framework of the Brans-Dicke scalar-tensor theory of gravity. Examples of wormholes associated with vacuum and electromagnetic fields are studied. All constructions must be threaded by exotic matter, except in the case of geometries with a singularity of finite radius, associated with an electric field, which can have a throat supported by ordinary matter. These results are achieved with any of the two definitions of the flare-out condition considered.Comment: 11 pages, 3 figures; v3: corrected version, conclusions unchange

    Superconductivity and magnetic order in the non-centrosymmetric Half Heusler compound ErPdBi

    Get PDF
    We report superconductivity at Tc=1.22T_c = 1.22 K and magnetic order at TN=1.06T_N = 1.06 K in the semi-metallic noncentrosymmetric Half Heusler compound ErPdBi. The upper critical field, Bc2B_{c2}, has an unusual quasi-linear temperature variation and reaches a value of 1.6 T for T0T \rightarrow 0. Magnetic order is found below TcT_c and is suppressed at BM2.5B{_M} \sim 2.5 T for T0T \rightarrow 0. Since TcTNT_c \simeq T_N, the interaction of superconductivity and magnetism is expected to give rise to a complex ground state. Moreover, electronic structure calculations show ErPdBi has a topologically nontrivial band inversion and thus may serve as a new platform to study the interplay of topological states, superconductivity and magnetic order.Comment: 6 pages, 5 figures; accepted for publication in Europhysics Letter

    Dirty black holes: Quasinormal modes for "squeezed" horizons

    Full text link
    We consider the quasinormal modes for a class of black hole spacetimes that, informally speaking, contain a closely ``squeezed'' pair of horizons. (This scenario, where the relevant observer is presumed to be ``trapped'' between the horizons, is operationally distinct from near-extremal black holes with an external observer.) It is shown, by analytical means, that the spacing of the quasinormal frequencies equals the surface gravity at the squeezed horizons. Moreover, we can calculate the real part of these frequencies provided that the horizons are sufficiently close together (but not necessarily degenerate or even ``nearly degenerate''). The novelty of our analysis (which extends a model-specific treatment by Cardoso and Lemos) is that we consider ``dirty'' black holes; that is, the observable portion of the (static and spherically symmetric) spacetime is allowed to contain an arbitrary distribution of matter.Comment: 15 pages, uses iopart.cls and setstack.sty V2: Two references added. Also, the appendix now relates our computation of the Regge-Wheeler potential for gravity in a generic "dirty" black hole to the results of Karlovini [gr-qc/0111066

    A Lemaitre-Tolman-Bondi cosmological wormhole

    Full text link
    We present a new analytical solution of the Einstein field equations describing a wormhole shell of zero thickness joining two Lema{\i}tre-Tolman-Bondi universes, with no radial accretion. The material on the shell satisfies the energy conditions and, at late times, the shell becomes comoving with the dust-dominated cosmic substratum.Comment: 5 pages, latex, no figures, to appear in Phys. Rev.
    corecore