17,178 research outputs found

    A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu

    Full text link
    Successful synthesis of room-temperature ferromagnetic semiconductors, Zn1x_{1-x}Fex_{x}O, is reported. The essential ingredient in achieving room-temperature ferromagnetism in bulk Zn1x_{1-x}Fex_{x}O was found to be additional Cu doping. A transition temperature as high as 550 K was obtained in Zn0.94_{0.94}Fe0.05_{0.05}Cu0.01_{0.01}O; the saturation magnetization at room temperature reached a value of 0.75μB0.75 \mu_{\rm B} per Fe. Large magnetoresistance was also observed below 100100 K.Comment: 11 pages, 4 figures; to appear in Appl. Phys. Let

    Anisotropic strains and magnetoresistance of La_{0.7}Ca_{0.3}MnO_{3}

    Full text link
    Thin films of perovskite manganite La_{0.7}Ca_{0.3}MnO_{3} were grown epitaxially on SrTiO_3(100), MgO(100) and LaAlO_3(100) substrates by the pulsed laser deposition method. Microscopic structures of these thin film samples as well as a bulk sample were fully determined by x-ray diffraction measurements. The unit cells of the three films have different shapes, i.e., contracted tetragonal, cubic, and elongated tetragonal for SrTiO_3, MgO, and LaAlO_3 cases, respectively, while the unit cell of the bulk is cubic. It is found that the samples with cubic unit cell show smaller peak magnetoresistance than the noncubic ones do. The present result demonstrates that the magnetoresistance of La_{0.7}Ca_{0.3}MnO_{3} can be controlled by lattice distortion via externally imposed strains.Comment: Revtex, 10 pages, 2 figure

    Subthreshold characteristics of pentacene field-effect transistors influenced by grain boundaries.

    Get PDF
    Grain boundaries in polycrystalline pentacene films significantly affect the electrical characteristics of pentacene field-effect transistors (FETs). Upon reversal of the gate voltage sweep direction, pentacene FETs exhibited hysteretic behaviours in the subthreshold region, which was more pronounced for the FET having smaller pentacene grains. No shift in the flat-band voltage of the metal-insulator-semiconductor capacitor elucidates that the observed hysteresis was mainly caused by the influence of localized trap states existing at pentacene grain boundaries. From the results of continuous on/off switching operation of the pentacene FETs, hole depletion during the off period is found to be limited by pentacene grain boundaries. It is suggested that the polycrystalline nature of a pentacene film plays an important role on the dynamic characteristics of pentacene FETs

    Development of Navigation Control Algorithm for AGV Using D* Search Algorithm

    Full text link
    In this paper, we present a navigation control algorithm for Automatic Guided Vehicles (AGV) that move in industrial environments including static and moving obstacles using D* algorithm. This algorithm has ability to get paths planning in unknown, partially known and changing environments efficiently. To apply the D* search algorithm, the grid map represent the known environment is generated. By using the laser scanner LMS-151 and laser navigation sensor NAV-200, the grid map is updated according to the changing of environment and obstacles. When the AGV finds some new map information such as new unknown obstacles, it adds the information to its map and re-plans a new shortest path from its current coordinates to the given goal coordinates. It repeats the process until it reaches the goal coordinates. This algorithm is verified through simulation and experiment. The simulation and experimental results show that the algorithm can be used to move the AGV successfully to reach the goal position while it avoids unknown moving and static obstacles. [Keywords— navigation control algorithm; Automatic Guided Vehicles (AGV); D* search algorithm

    Purification and detection of entangled coherent states

    Full text link
    In [J. C. Howell and J. A. Yeazell, Phys. Rev. A 62, 012102 (2000)], a proposal is made to generate entangled macroscopically distinguishable states of two spatially separated traveling optical modes. We model the decoherence due to light scattering during the propagation along an optical transmission line and propose a setup allowing an entanglement purification from a number of preparations which are partially decohered due to transmission. A purification is achieved even without any manual intervention. We consider a nondemolition configuration to measure the purity of the state as contrast of interference fringes in a double-slit setup. Regarding the entangled coherent states as a state of a bipartite quantum system, a close relationship between purity and entanglement of formation can be obtained. In this way, the contrast of interference fringes provides a direct means to measure entanglement.Comment: 9 pages, 6 figures, using Revtex

    Interplay between carrier and impurity concentrations in annealed Ga1x_{1-x}Mnx_{x}As intrinsic anomalous Hall Effect

    Get PDF
    Investigating the scaling behavior of annealed Ga1x_{1-x}Mnx_{x}As anomalous Hall coefficients, we note a universal crossover regime where the scaling behavior changes from quadratic to linear, attributed to the anomalous Hall Effect intrinsic and extrinsic origins, respectively. Furthermore, measured anomalous Hall conductivities when properly scaled by carrier concentration remain constant, equal to theoretically predicated values, spanning nearly a decade in conductivity as well as over 100 K in TC_{C}. Both the qualitative and quantitative agreement confirms the validity of new equations of motion including the Berry phase contributions as well as tunablility of the intrinsic anomalous Hall Effect.Comment: 4 pages, 5 figure

    Quickest Paths in Simulations of Pedestrians

    Full text link
    This contribution proposes a method to make agents in a microscopic simulation of pedestrian traffic walk approximately along a path of estimated minimal remaining travel time to their destination. Usually models of pedestrian dynamics are (implicitly) built on the assumption that pedestrians walk along the shortest path. Model elements formulated to make pedestrians locally avoid collisions and intrusion into personal space do not produce motion on quickest paths. Therefore a special model element is needed, if one wants to model and simulate pedestrians for whom travel time matters most (e.g. travelers in a station hall who are late for a train). Here such a model element is proposed, discussed and used within the Social Force Model.Comment: revised version submitte
    corecore