1,048 research outputs found

    FPGA basierte, konfigurierbare OFDM Sender-Plattform für die Positionsbestimmung mittels TDoA

    Get PDF
    Für die Evaluierung von Algorithmen zur Positionsbestimmung nach dem Time Difference of Arrival – Verfahren wird eine frei konfigurierbare OFDM Sender-Plattform benötigt. Da die Berechnung in Echtzeit erfolgen soll, ist eine Implementierung in rekonfigurierbarer Hardware (FPGA) erforderlich. Das Manuskript gibt sowohl einen Überblick über die Hintergründe und die Architektur des Sendesystems, als auch einen tieferen Einblick in verschiedene Lösungsdetails

    A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone

    Full text link
    Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical applications. It would be desirable to develop similar guidelines for the sampling of other trace gases in exhaled breath, especially volatile organic compounds (VOCs) which reflect ongoing metabolism. The concentrations of water-soluble, blood-borne substances in exhaled breath are influenced by: (i) breathing patterns affecting gas exchange in the conducting airways; (ii) the concentrations in the tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations of the compound. The classical Farhi equation takes only the alveolar concentrations into account. Real-time measurements of acetone in end-tidal breath under an ergometer challenge show characteristics which cannot be explained within the Farhi setting. Here we develop a compartment model that reliably captures these profiles and is capable of relating breath to the systemic concentrations of acetone. By comparison with experimental data it is inferred that the major part of variability in breath acetone concentrations (e.g., in response to moderate exercise or altered breathing patterns) can be attributed to airway gas exchange, with minimal changes of the underlying blood and tissue concentrations. Moreover, it is deduced that measured end-tidal breath concentrations of acetone determined during resting conditions and free breathing will be rather poor indicators for endogenous levels. Particularly, the current formulation includes the classical Farhi and the Scheid series inhomogeneity model as special limiting cases.Comment: 38 page

    Toksični učinci olova u profesionalno izložene indijske obitelji

    Get PDF
    This article describes an entire family manufacturing lead acid batteries who all suffered from lead poisoning. The family of five lived in a house, part of which had been used for various stages of battery production for 14 years. Open space was used for drying batteries. They all drank water from a well located on the premises. Evaluation of biomarkers of lead exposure and/or effect revealed alarming blood lead levels [(3.92±0.94) µmol L-1], 50 % reduction in the activity of δ-aminolevulinic acid dehydratase [(24.67±5.12) U L-1] and an increase in zinc protoporphyrin [(1228±480) µg L-1]. Liver function tests showed an increase in serum alkaline phosphatase [(170.41±41.82) U L-1]. All other liver function test parameters were normal. Renal function tests showed an increase in serum uric acid [(515.81±86.29) µmol L-1] while urea and creatinine were normal. Serum calcium was low [(1.90±0.42) mmol L-1 in women and (2.09±0.12) mmol L-1 in men], while blood pressure was high in the head of the family and his wife and normal in children. Lead concentration in well water was estimated to 180 µg L-1. The family was referred to the National Referral Centre for Lead Poisoning in India, were they were received treatment and were informed about the hazards of lead poisoning. A follow up three months later showed a slight decrease in blood lead levels and a significant increase in haemoglobin. These findings can be attributed to behavioural changes adopted by the family, even though they continued producing lead batteries.Olovo je sveprisutni metal s mnogo namjena, a čovječanstvo ga rabi već više od 6000 godina. Danas je olovo među najrasprostranjenijim toksinima u okolišu, a drugi je na popisu toksičnih metala, odmah iza arsena. Mnogi još nisu svjesni njegova toksičnoga djelovanja te se i dalje izlažu olovu. Ovdje je opisana obitelj koja proizvodi olovne akumulatore i koja je pretrpjela trovanje olovom zahvaljujući svojoj neobaviještenosti. Ova peteročlana obitelj živjela je u jednome kućanstvu čiji je dio namijenjen različitim fazama proizvodnje akumulatora već 14 godina. Akumulatori su se sušili na otvorenome. Na imanju je bio i bunar s pitkom vodom. Mjerenja biopokazatelja izloženosti olovu i njegova djelovanja u svih pet članova obitelji dovela su do alarmantnoga saznanja o razinama olova u krvi [(3,92±0,94) µmol L-1], 50 %-tnom padu aktivnosti dehidrataze δ-aminolevulinske kiseline [(24,67±5,12) U L-1] te povišenom cinkovu protoporfirinu [(1228±480) µg L-1]. Jetrene probe otkrile su povišene razine alkalne fosfataze u serumu [(170,41±41,82) U L-1]. Ostali su parametri jetrene funkcije bili normalni. Testovi funkcije bubrega otkrili su povišene razine mokraćne kiseline u serumu [(515,81±86,29) µmol L-1], dok su razine ureje i kreatinina bile normalne. Također je zabilježen pad razina kalcija u serumu [(1,90±0,42) mmol L-1 u žena te (2,09±0,12) mmol L-1 u muškaraca]. Povišeni krvni tlak zamijećen je u glave obitelji i njegove supruge, dok je u djece bio normalan. Koncentracija olova u bunarskoj vodi bila je izrazito visoka, prema procjeni 180 µg L-1. Obitelj je upućena u indijski Državni referalni centar za otrovanje olovom (National Referral Centre for Lead Poisoning) gdje je primila lijekove i bila upoznata s činjenicama vezanim uz otrovanje olovom. Tromjesečno je praćenje pokazalo blagi pad razina olova u krvi te značajan porast hemoglobina. Ovi se nalazi mogu pripisati promjenama u ponašanju obitelji, bez obzira na to što je nastavila proizvoditi akumulatore

    Metabolism and Toxicity of Thioacetamide and Thioacetamide SOxide in Rat Hepatocytes

    Get PDF
    “This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemical Research in Toxicology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/tx3002719The hepatotoxicity of thioacetamide (TA) has been known since 1948. In rats, single doses cause centrilobular necrosis accompanied by increases in plasma transaminases and bilirubin. To elicit these effects TA requires oxidative bioactivation leading first to its S-oxide (TASO) and then to its chemically reactive S,S-dioxide (TASO2) which ultimately modifies amine-lipids and proteins. To generate a suite of liver proteins adducted by TA metabolites for proteomic analysis, and to reduce the need for both animals and labeled compounds, we treated isolated hepatocytes directly with TA. Surprisingly, TA was not toxic at concentrations up to 50 mM for 40 hr. On the other hand, TASO was highly toxic to isolated hepatocytes as indicated by LDH release, cellular morphology and vital staining with Hoechst 33342/propidium iodide. TASO toxicity was partially blocked by the CYP2E1 inhibitors diallyl sulfide and 4-methylpyrazole, and was strongly inhibited by TA. Significantly, we found that hepatocytes produce TA from TASO relatively efficiently by back-reduction. The covalent binding of [14C]-TASO is inhibited by unlabeled TA which acts as a “cold-trap” for [14C]-TA and prevents its re-oxidation to [14C]-TASO. This in turn increases the net consumption of [14C]-TASO despite the fact that its oxidation to TASO2 is inhibited. The potent inhibition of TASO oxidation by TA, coupled with the back-reduction of TASO and its futile redox cycling with TA may help explain phenomena previously interpreted as “saturation toxicokinetics” in the in vivo metabolism and toxicity of TA and TASO. The improved understanding of the metabolism and covalent binding of TA and TASO facilitates the use of hepatocytes to prepare protein adducts for target protein identification

    Covalent Modification of Lipids and Proteins in Rat Hepatocytes, and In Vitro, by Thioacetamide Metabolites

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemical Research in Toxicology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/tx3001658Thioacetamide (TA) is a well-known hepatotoxin in rats. Acute doses cause centrilobular necrosis and hyperbilirubinemia while chronic administration leads to biliary hyperplasia and cholangiocarcinoma. Its acute toxicity requires its oxidation to a stable S-oxide (TASO) that is oxidized further to a highly reactive S,S-dioxide (TASO2). To explore possible parallels between the metabolism, covalent binding and toxicity of TA and thiobenzamide (TB) we exposed freshly isolated rat hepatocytes to [14C]-TASO or [13C2D3]-TASO. TLC analysis of the cellular lipids showed a single major spot of radioactivity that mass spectral analysis showed to consist of N-acetimidoyl PE lipids having the same side chain composition as the PE fraction from untreated cells; no carbons or hydrogens from TASO were incorporated into the fatty acyl chains. Many cellular proteins contained N-acetyl- or N-acetimidoyl lysine residues in a 3:1 ratio (details to be reported separately). We also oxidized TASO with hydrogen peroxide in the presence of dipalmitoyl phosphatidylenthanolamine (DPPE) or lysozyme. Lysozyme was covalently modified at five of its six lysine side chains; only acetamide-type adducts were formed. DPPE in liposomes also gave only amide-type adducts, even when the reaction was carried out in tetrahydrofuran with only 10% water added. The exclusive formation of N-acetimidoyl PE in hepatocytes means that the concentration or activity of water must be extremely low in the region where TASO2 is formed, whereas at least some of the TASO2 can hydrolyze to acetylsulfinic acid before it reacts with cellular proteins. The requirement for two sequential oxidations to produce a reactive metabolite is unusual, but it is even more unusual that a reactive metabolite would react with water to form a new compound that retains a high degree of chemical reactivity toward biological nucleophiles. The possible contribution of lipid modification to the hepatotoxicity of TA/TASO remains to be determined

    Analyzing international medical graduate research productivity for application to US neurosurgery residency and beyond: A survey of applicants, program directors, and institutional experience

    Get PDF
    BackgroundThe authors investigated perceived discrepancies between the neurosurgical research productivity of international medical graduates (IMGs) and US medical graduates (USMGs) through the perspective of program directors (PDs) and successfully matched IMGs.MethodsResponses to 2 separate surveys on neurosurgical applicant research productivity in 115 neurosurgical programs and their PDs were analyzed. Neurosurgical research participation was analyzed using an IMG survey of residents who matched into neurosurgical residency within the previous 8 years. Productivity of IMGs conducting dedicated research at the study institution was also analyzed.ResultsThirty-two of 115 (28%) PDs responded to the first research productivity survey and 43 (37%) to the second IMG research survey. PDs expected neurosurgery residency applicants to spend a median of 12–24 months on research (Q1-Q3: 0–12 to 12–24; minimum time: 0–24; maximum time: 0–48) and publish a median of 5 articles (Q1-Q3: 2–5 to 5–10; minimum number: 0–10; maximum number: 4–20). Among 43 PDs, 34 (79%) ranked “research institution or associated personnel” as the most important factor when evaluating IMGs' research. Forty-two of 79 (53%) IMGs responding to the IMG-directed survey reported a median of 30 months (Q1-Q3: 18–48; range: 4–72) of neurosurgical research and 12 published articles (Q1-Q3: 6–24; range: 1–80) before beginning neurosurgical residency. Twenty-two PDs (69%) believed IMGs complete more research than USMGs before residency. Of 20 IMGs conducting dedicated neuroscience/neurosurgery research at the study institution, 16 of 18 who applied matched or entered a US neurosurgical training program; 2 applied and entered a US neurosurgical clinical fellowship.ConclusionThe research work of IMGs compared to USMGs who apply to neurosurgery residency exceeds PDs' expectations regarding scientific output and research time. Many PDs perceive IMG research productivity before residency application as superior to USMGs. Although IMGs comprise a small percentage of trainees, they are responsible for a significant amount of US-published neurosurgical literature. Preresidency IMG research periods may be improved with dedicated mentoring and advising beginning before the research period, during the period, and within a neurosurgery research department, providing a formal structure such as a research fellowship or graduate program for IMGs aspiring to train in the US

    A protein functionalization platform based on selective reactions at methionine residues.

    Get PDF
    Nature has a remarkable ability to carry out site-selective post-translational modification of proteins, therefore enabling a marked increase in their functional diversity1. Inspired by this, chemical tools have been developed for the synthetic manipulation of protein structure and function, and have become essential to the continued advancement of chemical biology, molecular biology and medicine. However, the number of chemical transformations that are suitable for effective protein functionalization is limited, because the stringent demands inherent to biological systems preclude the applicability of many potential processes2. These chemical transformations often need to be selective at a single site on a protein, proceed with very fast reaction rates, operate under biologically ambient conditions and should provide homogeneous products with near-perfect conversion2-7. Although many bioconjugation methods exist at cysteine, lysine and tyrosine, a method targeting a less-explored amino acid would considerably expand the protein functionalization toolbox. Here we report the development of a multifaceted approach to protein functionalization based on chemoselective labelling at methionine residues. By exploiting the electrophilic reactivity of a bespoke hypervalent iodine reagent, the S-Me group in the side chain of methionine can be targeted. The bioconjugation reaction is fast, selective, operates at low-micromolar concentrations and is complementary to existing bioconjugation strategies. Moreover, it produces a protein conjugate that is itself a high-energy intermediate with reactive properties and can serve as a platform for the development of secondary, visible-light-mediated bioorthogonal protein functionalization processes. The merger of these approaches provides a versatile platform for the development of distinct transformations that deliver information-rich protein conjugates directly from the native biomacromolecules
    corecore