21,302 research outputs found
On the Lagrangian Method for Steady and Unsteady Flow
A new and general Lagrangian formulation of fluid motion is given in which the independent variables are three material functions and a Lagrangian time, which differs for different fluid particles and is distinct from the Eulerian time. For steady flow it requires only three independent variables - the Lagrangian time and two stream functions - in contrast with the conventional Lagrangian formulation which apparently still requires four independent variables for describing a steady flow. This places the Lagrangian formulation for steady flow on the same footing as the Eulerian. For unsteady flow, the new formulation includes the conventional formulation as a special case when the Lagrangian time is identified with the Eulerian time and when the material functions are taken to be the fluid particle's position at some given time. The distinction between the Lagrangian and Eulerian time, however, is found useful in applications, e.g., to problems involving a free boundary
The Evolution of Bias - Generalized
Fry (1996) showed that galaxy bias has the tendency to evolve towards unity,
i.e. in the long run, the galaxy distribution tends to trace that of matter.
Generalizing slightly Fry's reasoning, we show that his conclusion remains
valid in theories of modified gravity (or equivalently, complex clustered dark
energy). This is not surprising: as long as both galaxies and matter are
subject to the same force, dynamics would drive them towards tracing each
other. This holds, for instance, in theories where both galaxies and matter
move on geodesics. This relaxation of bias towards unity is tempered by cosmic
acceleration, however: the bias tends towards unity but does not quite make it,
unless the formation bias were close to unity. Our argument is extended in a
straightforward manner to the case of a stochastic or nonlinear bias. An
important corollary is that dynamical evolution could imprint a scale
dependence on the large scale galaxy bias. This is especially pronounced if
non-standard gravity introduces new scales to the problem: the bias at
different scales relaxes at different rates, the larger scales generally more
slowly and retaining a longer memory of the initial bias. A consistency test of
the current (general relativity + uniform dark energy) paradigm is therefore to
look for departure from a scale independent bias on large scales. A simple way
is to measure the relative bias of different populations of galaxies which are
at different stages of bias relaxation. Lastly, we comment on the possibility
of directly testing the Poisson equation on cosmological scales, as opposed to
indirectly through the growth factor.Comment: 8 pages, 2 figures. References added. Accepted for publication in
Physical Review
ADN: An Information-Centric Networking Architecture for the Internet of Things
Forwarding data by name has been assumed to be a necessary aspect of an
information-centric redesign of the current Internet architecture that makes
content access, dissemination, and storage more efficient. The Named Data
Networking (NDN) and Content-Centric Networking (CCNx) architectures are the
leading examples of such an approach. However, forwarding data by name incurs
storage and communication complexities that are orders of magnitude larger than
solutions based on forwarding data using addresses. Furthermore, the specific
algorithms used in NDN and CCNx have been shown to have a number of
limitations. The Addressable Data Networking (ADN) architecture is introduced
as an alternative to NDN and CCNx. ADN is particularly attractive for
large-scale deployments of the Internet of Things (IoT), because it requires
far less storage and processing in relaying nodes than NDN. ADN allows things
and data to be denoted by names, just like NDN and CCNx do. However, instead of
replacing the waist of the Internet with named-data forwarding, ADN uses an
address-based forwarding plane and introduces an information plane that
seamlessly maps names to addresses without the involvement of end-user
applications. Simulation results illustrate the order of magnitude savings in
complexity that can be attained with ADN compared to NDN.Comment: 10 page
A NuSTAR Observation of the Gamma-ray Emitting Millisecond Pulsar PSR J1723-2837
We report on the first NuSTAR observation of the gamma-ray emitting
millisecond pulsar binary PSR J1723-2837. X-ray radiation up to 79 keV is
clearly detected and the simultaneous NuSTAR and Swift spectrum is well
described by an absorbed power-law with a photon index of ~1.3. We also find
X-ray modulations in the 3-10 keV, 10-20 keV, 20-79 keV, and 3-79 keV bands at
the 14.8-hr binary orbital period. All these are entirely consistent with
previous X-ray observations below 10 keV. This new hard X-ray observation of
PSR J1723-2837 provides strong evidence that the X-rays are from the
intrabinary shock via an interaction between the pulsar wind and the outflow
from the companion star. We discuss how the NuSTAR observation constrains the
physical parameters of the intrabinary shock model.Comment: Accepted for publication in ApJ. 5 pages, 3 figure
Swift, XMM-Newton, and NuSTAR observations of PSR J2032+4127/MT91 213
We report our recent Swift, NuSTAR, and XMM-Newton X-ray and Lijiang optical
observations on PSR J2032+4127/MT91 213, the gamma-ray binary candidate with a
period of 45-50 years. The coming periastron of the system was predicted to be
in November 2017, around which high-energy flares from keV to TeV are expected.
Recent studies with Chandra and Swift X-ray observations taken in 2015/16
showed that its X-ray emission has been brighter by a factors of ~10 than that
before 2013, probably revealing some on-going activities between the pulsar
wind and the stellar wind. Our new Swift/XRT lightcurve shows no strong
evidence of a single vigorous brightening trend, but rather several strong
X-ray flares on weekly to monthly timescales with a slowly brightening
baseline, namely the low state. The NuSTAR and XMM-Newton observations taken
during the flaring and the low states, respectively, show a denser environment
and a softer power-law index during the flaring state, implying that the pulsar
wind interacted with stronger stellar winds of the companion to produce the
flares. These precursors would be crucial in studying the predicted giant
outburst from this extreme gamma-ray binary during the periastron passage in
late 2017.Comment: 6 pages, including 3 figures and 2 tables. Accepted for publication
in Ap
Scale-free networks with tunable degree distribution exponents
We propose and study a model of scale-free growing networks that gives a
degree distribution dominated by a power-law behavior with a model-dependent,
hence tunable, exponent. The model represents a hybrid of the growing networks
based on popularity-driven and fitness-driven preferential attachments. As the
network grows, a newly added node establishes new links to existing nodes
with a probability based on popularity of the existing nodes and a
probability based on fitness of the existing nodes. An explicit form of
the degree distribution is derived within a mean field approach. For
reasonably large , , where the
function is dominated by the behavior of for small
values of and becomes -independent as , and is a
model-dependent exponent. The degree distribution and the exponent
are found to be in good agreement with results obtained by extensive numerical
simulations.Comment: 12 pages, 2 figures, submitted to PR
- …