50 research outputs found

    S-thioallylation of proteins by the garlic defence substance allicin and its biological effects

    Get PDF
    A single clove of edible garlic (Allium sativum L.) of about 10 g produces up to 5 mg of allicin (diallylthiosulfinate), a thiol-reactive sulfur-containing defence substance that gives injured garlic tissue its characteristic smell. Allicin induces apoptosis or necrosis in a dose-dependent manner but biocompatible doses influence cellular metabolism and signalling cascades. Oxidation of protein thiols and depletion of the glutathione pool are thought to be responsible for allicin's physiological effects. Here, we studied the effect of allicin on post-translational thiol-modification in human Jurkat T-cells using shotgun LC-MS/MS analyses. We identified 332 proteins that were modified by S-thioallylation in the Jurkat cell proteome which causes a mass shift of 72 Da on cysteines. Many S-thioallylated proteins are highly abundant proteins, including cytoskeletal proteins tubulin, actin, cofilin, filamin and plastin-2, the heat shock chaperones HSP90 and HSPA4, the glycolytic enzymes GAPDH, ALDOA, PKM as well the protein translation factor EEF2. Allicin disrupted the actin cytoskeleton in murine L929 fibroblasts. Allicin stimulated the immune response by causing Zn2+ release from proteins and increasing the Zn2+-dependent IL-1-triggered production of IL-2 in murine EL-4 T-cells. Furthermore, allicin caused inhibition of enolase activity, an enzyme considered a cancer therapy target. In conclusion, our study revealed the widespread extent of S-thioallylation in the human Jurkat cell proteome and showed effects of allicin exposure on essential cellular functions of selected targets, many of which are targets for cancer therapy

    Environmental Salinity Determines the Specificity and Need for Tat-Dependent Secretion of the YwbN Protein in Bacillus subtilis

    Get PDF
    Twin-arginine protein translocation (Tat) pathways are required for transport of folded proteins across bacterial, archaeal and chloroplast membranes. Recent studies indicate that Tat has evolved into a mainstream pathway for protein secretion in certain halophilic archaea, which thrive in highly saline environments. Here, we investigated the effects of environmental salinity on Tat-dependent protein secretion by the Gram-positive soil bacterium Bacillus subtilis, which encounters widely differing salt concentrations in its natural habitats. The results show that environmental salinity determines the specificity and need for Tat-dependent secretion of the Dyp-type peroxidase YwbN in B. subtilis. Under high salinity growth conditions, at least three Tat translocase subunits, namely TatAd, TatAy and TatCy, are involved in the secretion of YwbN. Yet, a significant level of Tat-independent YwbN secretion is also observed under these conditions. When B. subtilis is grown in medium with 1% NaCl or without NaCl, the secretion of YwbN depends strictly on the previously described “minimal Tat translocase” consisting of the TatAy and TatCy subunits. Notably, in medium without NaCl, both tatAyCy and ywbN mutants display significantly reduced exponential growth rates and severe cell lysis. This is due to a critical role of secreted YwbN in the acquisition of iron under these conditions. Taken together, our findings show that environmental conditions, such as salinity, can determine the specificity and need for the secretion of a bacterial Tat substrate

    Phenotype Enhancement Screen of a Regulatory spx Mutant Unveils a Role for the ytpQ Gene in the Control of Iron Homeostasis

    Get PDF
    Spx is a global regulator of genes that are induced by disulfide stress in Bacillus subtilis. The regulon that it governs is comprised of over 120 genes based on microarray analysis, although it is not known how many of these are under direct Spx control. Most of the Spx-regulated genes (SRGs) are of unknown function, but many encode products that are conserved in low %GC Gram-positive bacteria. Using a gene-disruption library of B. subtilis genomic mutations, the SRGs were screened for phenotypes related to Spx-controlled activities, such as poor growth in minimal medium and sensitivity to methyglyoxal, but nearly all of the SRG mutations showed little if any phenotype. To uncover SRG function, the mutations were rescreened in an spx mutant background to determine which mutant SRG allele would enhance the spx mutant phenotype. One of the SRGs, ytpQ was the site of a mutation that, when combined with an spx null mutation, elevated the severity of the Spx mutant phenotype, as shown by reduced growth in a minimal medium and by hypersensitivity to methyglyoxal. The ytpQ mutant showed elevated oxidative protein damage when exposed to methylglyoxal, and reduced growth rate in liquid culture. Proteomic and transcriptomic data indicated that the ytpQ mutation caused the derepression of the Fur and PerR regulons of B. subtilis. Our study suggests that the ytpQ gene, encoding a conserved DUF1444 protein, functions directly or indirectly in iron homeostasis. The ytpQ mutant phenotype mimics that of a fur mutation, suggesting a condition of low cellular iron. In vitro transcription analysis indicated that Spx stimulates transcription from the ytpPQR operon within which the ytpQ gene resides. The work uncovers a link between Spx and control of iron homeostasis

    Graphic loans: East Asia and beyond

    Get PDF
    The national languages of East Asia (Chinese, Japanese, Korean and Vietnamese) have made extensive use of a type of linguistic borrowing sometimes referred to as a 'graphic loan'. Such loans have no place in the conventional classification of loans based on Haugen (1950) or Weinreich (1953), and research on loan word theory and phonology generally overlooks them. The classic East Asian phenomenon is discussed and a framework is proposed to describe its mechanism. It is argued that graphic loans are more than just 'spelling pronunciations', because they are a systematic and widespread process, independent of but not inferior to phonological borrowing. The framework is then expanded to cover a range of other cases of borrowing between languages to show that graphic loans are not a uniquely East Asian phenomenon, and therefore need to be considered as a major category of loan

    Body representation disorders predict left right orientation impairments after stroke : A voxel-based lesion symptom mapping study

    No full text
    Introduction: Deficits in the ability to distinguish between the left and right side of the body can severely impair daily life functioning. The current study examined the relation between left right orientation (LRO) impairments and somatosensory related deficits, ranging from primary somatosensory impairments to body representation impairments, in patients who suffered a recent stroke. We also examined which areas in the brain are associated with LRO impairments using a Voxel-based Lesion Symptom Mapping (VLSM) analysis. Method: We tested 47 first-ever stroke patients and 48 age-matched healthy controls. LRO was assessed with the Bergen Right Left Discrimination Test (BRLD). Impairments on primary somatosensory function (touch perception, proprioception), higher order somatosensory function (finger gnosis, subjective sense of body ownership) and other cognitive functions (language, attention & working memory, visuospatial neglect) were entered as predictors in a logistic regression analyses. Outcome measures consisted of the BRLD-total performance which was further subdivided in performance for 1) first person perspective stimuli, 2) third person perspective stimuli, 3) alternating between first- and third person perspective. Results: Impairments on BRLD-total performance was predicted by impairments in finger gnosis and visuospatial neglect. For items placed in third person perspective, performance was predicted by body representation impairments; finger agnosia and the subjective sense of body ownership. VLSM analysis showed a significant association between LRO impairments and damage to the right insula. Discussion: The current study suggests that the somatosensory system is important for LRO. Furthermore, the results indicate that an affected body representation may hinder adopting a third person perspective that may subsequently also lead to LRO impairments. The right insular cortex appeared crucially involved in these processes
    corecore