326 research outputs found

    Pathological regional blood flow in opiate-dependent patients during withdrawal: A HMPAO-SPECT study

    Get PDF
    The aims of the present study were to investigate regional cerebral blood flow (rCBF) in heroin-dependent patients during withdrawal and to assess the relation between these changes and duration of heroin consumption and withdrawal data. The rCBF was measured using brain SPECT with Tc-99m-HMPAO in 16 heroin-dependent patients during heroin withdrawal. Thirteen patients received levomethadone at the time of the SPECT scans. The images were analyzed both visually and quantitatively, a total of 21 hypoperfused brain regions were observed in 11 of the 16 patients. The temporal lobes were the most affected area, hypoperfusions of the right and left temporal lobe were observed in 5 and 5 patients, respectively. Three of the patients had a hypoperfusion of the right frontal lobe, 2 patients showed perfusion defects in the left frontal lobe, right parietal lobe and left parietal lobe. The results of the quantitative assessments of the rCBF were consistent with the results of the qualitative findings. The stepwise regression analysis showed a significant positive correlation (r = 0.54) between the dose of levomethadone at the time of the SPECT scan and the rCBF of the right parietal lobe. Other significant correlations between clinical data and rCBF were not found. The present results suggest brain perfusion abnormalities during heroin withdrawal in heroin-dependent patients, which are not due to the conditions of withdrawal

    On the optical properties of Ag^{+15} ion-beam irradiated TiO_{2} and SnO_{2} thin films

    Full text link
    The effects of 200-MeV Ag^{+15} ion irradiation on the optical properties of TiO_{2} and SnO_{2} thin films prepared by using the RF magnetron sputtering technique were investigated. These films were characterized by using UV-vis spectroscopy, and with increasing irradiation fluence, the transmittance for the TiO_{2} films was observed to increase systematically while that for SnO_{2} was observed to decrease. Absorption spectra of the irradiated samples showed minor changes in the indirect bandgap from 3.44 to 3.59 eV with increasing irradiation fluence for TiO_{2} while significant changes in the direct bandgap from 3.92 to 3.6 eV were observed for SnO_{2}. The observed modifications in the optical properties of both the TiO_{2} and the SnO_{2} systems with irradiation can be attributed to controlled structural disorder/defects in the system.Comment: 6 pages, ICAMD-201

    Evidence of Josephson-coupled superconducting regions at the interfaces of Highly Oriented Pyrolytic Graphite

    Full text link
    Transport properties of a few hundreds of nanometers thick (in the graphene plane direction) lamellae of highly oriented pyrolytic graphite (HOPG) have been investigated. Current-Voltage characteristics as well as the temperature dependence of the voltage at different fixed input currents provide evidence for Josephson-coupled superconducting regions embedded in the internal two-dimensional interfaces, reaching zero resistance at low enough temperatures. The overall behavior indicates the existence of superconducting regions with critical temperatures above 100 K at the internal interfaces of oriented pyrolytic graphite.Comment: 6 Figures, 5 page

    Damage buildup in GaN under ion bombardment

    Get PDF
    The damage buildup until amorphization in wurtzite GaN films under keV Light(C-12) and heavy (Au-197) ion bombardment at room and liquid nitrogen (LN2) temperatures is studied by Rutherford backscattering/channeling (RBS/C) spectrometry and transmission electron microscopy (TEM). The effect of beam flux on implantation damage in GaN is reported. A marked similarity between damage buildup for Light and heavy ion bombardment regimes is observed. The results point to substantial dynamic annealing of irradiation defects even during heavy ion bombardment at LN2 temperature. Amorphization starts from the GaN surface with increasing ion dose for both LN2 and room-temperature bombardment with light or heavy ions. A strong surface defect peak, seen by RBS/C, arises from an amorphous layer at the GaN surface, as indicated by TEM. The origin of such an amorphous layer is attributed to the trapping of mobile point defects by the GaN surface, as suggested by the flux behavior. However, in the samples implanted with light ions to low doses (1 X 10(15) cm(-2)), no amorphous layer on the GaN surface is revealed by TEM. Damage buildup is highly sig-modal for LN: temperature irradiation with light or heavy ions. Formation of planar defects in the crystal bulk is assumed to provide a "nucleation site" for amorphization with increasing ion dose during irradiation at LN2 temperature. For room-temperature bombardment with heavy ions. the damage in the GaN bulk region saturates at a level lower than that of the amorphous phase, as measured by RBS/C, and amorphization proceeds From the GaN surface with increasing ion dose. For such a saturation regime at room temperature, implantation damage in the bulk consists of point-defect clusters and planar defects which are parallel to the basal plane of the GaN film. Various defect interaction processes in GaN during ion bombardment are proposed to explain the observed somewhat unexpected behavior of disorder buildup

    Vortex phase diagram in BSCCO with damage tracks created by 30 MeV fullerene irradiation

    Full text link
    Using 30 MeV C60 fullerene irradiation, we have produced latent tracks of diameter 20 nm and length 200 nm, near the surface of single crystalline BSCCO. A preliminary transmission electron microscopy study shows evidence for a very high density of deposited energy, and the ejection of material from the track core in very thin specimens. The latent tracks reveal themselves to be exceptionally strong pinning centers for vortices in the superconducting mixed state. Both the critical current density and magnetic irreversibility line are significantly enhanced. The irradiated crystals present salient features of the (B,T) phase diagram of vortex matter both of pristine crystals, such as the first order vortex phase transition, and the exponential Bose-glass line characteristic of heavy ion-irradiated crystals. We show that the latter is manifestly independent of the pinning potential.Comment: 10 pages, 13 figure
    • …
    corecore