1,917 research outputs found

    Curculionidae and Chrysomelidae Found in Aquatic Habitats in Wisconsin

    Get PDF
    (excerpt) We became interested in aquatic weevils (Curculionidae) and leaf beetles (Chryso- melidae) during the Aquatic Entomology Course at the University of Wisconsin, in the spring of 1971. Many collections, taken from a variety of aquatic habitats in Wisconsin, contained weevils and leaf beetles. Most of the species were not fully treated in the keys found in aquatic entomology texts. We thought it would be useful to compile keys from the literature and present what is known of the distribution of these insects in Wisconsin. Nine species of weevils have been found in aquatic habitats in Wisconsin, representing seven genera, all belonging to the subtribe Hydronomi, and twenty-five species of leaf beetles, representing five genera in three subfamilies

    Thematic mapper research in the earth sciences: Small scale patches of suspended matter and phytoplankton in the Elbe River Estuary, German Bight and Tidal Flats

    Get PDF
    A Thematic Mapper (TM) field experiment was followed by a data analysis to determine TM capabilities for analysis of suspended matter and phytoplankton. Factor analysis showed that suspended matter concentration, atmospheric scattering, and sea surface temperature can be retrieved as independent factors which determine the variation in the TM data over water areas. Spectral channels in the near infrared open the possibility of determining the Angstrom exponent better than for the coastal zone color scanner. The suspended matter distribution may then be calculated by the absolute radiance of channel 2 or 3 or the ratio of both. There is no indication of whether separation of chlorophyll is possible. The distribution of suspended matter and sea surface temperature can be observed with the expected fine structure. A good correlation between water depth and suspended matter distribution as found from ship data can now be analyzed for an entire area by the synoptic view of the TM scenes

    STEPS - an approach for human mobility modeling

    Get PDF
    In this paper we introduce Spatio-TEmporal Parametric Stepping (STEPS) - a simple parametric mobility model which can cover a large spectrum of human mobility patterns. STEPS makes abstraction of spatio-temporal preferences in human mobility by using a power law to rule the nodes movement. Nodes in STEPS have preferential attachment to favorite locations where they spend most of their time. Via simulations, we show that STEPS is able, not only to express the peer to peer properties such as inter-ontact/contact time and to reflect accurately realistic routing performance, but also to express the structural properties of the underlying interaction graph such as small-world phenomenon. Moreover, STEPS is easy to implement, exible to configure and also theoretically tractable

    Neutron star properties and the equation of state of neutron-rich matter

    Full text link
    We calculate total masses and radii of neutron stars (NS) for pure neutron matter and nuclear matter in beta-equilibrium. We apply a relativistic nuclear matter equation of state (EOS) derived from Dirac-Brueckner-Hartree-Fock (DBHF) calculations. We use realistic nucleon-nucleon (NN) interactions defined in the framework of the meson exchange potential models. Our results are compared with other theoretical predictions and recent observational data. Suggestions for further study are discussed.Comment: 13 pages, 9 figures, 1 table; Revised version, accepted for publication in Physical Review

    Quark mean field model with density dependent couplings for finite nuclei

    Get PDF
    The quark mean field model, which describes the nucleon using the constituent quark model, is applied to investigate the properties of finite nuclei. The couplings of the scalar and vector mesons with quarks are made density dependent through direct coupling to the scalar field so as to reproduce the relativistic Brueckner-Hartree-Fock results of nuclear matter. The present model provides satisfactory results on the properties of spherical nuclei, and predicts an increasing size of the nucleon as well as a reduction of the nucleon mass in the nuclear environmentComment: 8 pages, REVTeX, 8 ps figures, accepted for publication in Phys. Rev.

    Levy flights and Levy -Schroedinger semigroups

    Full text link
    We analyze two different confining mechanisms for L\'{e}vy flights in the presence of external potentials. One of them is due to a conservative force in the corresponding Langevin equation. Another is implemented by Levy-Schroedinger semigroups which induce so-called topological Levy processes (Levy flights with locally modified jump rates in the master equation). Given a stationary probability function (pdf) associated with the Langevin-based fractional Fokker-Planck equation, we demonstrate that generically there exists a topological L\'{e}vy process with the very same invariant pdf and in the reverse.Comment: To appear in Cent. Eur. J. Phys. (2010

    Multiscale mobility networks and the large scale spreading of infectious diseases

    Full text link
    Among the realistic ingredients to be considered in the computational modeling of infectious diseases, human mobility represents a crucial challenge both on the theoretical side and in view of the limited availability of empirical data. In order to study the interplay between small-scale commuting flows and long-range airline traffic in shaping the spatio-temporal pattern of a global epidemic we i) analyze mobility data from 29 countries around the world and find a gravity model able to provide a global description of commuting patterns up to 300 kms; ii) integrate in a worldwide structured metapopulation epidemic model a time-scale separation technique for evaluating the force of infection due to multiscale mobility processes in the disease dynamics. Commuting flows are found, on average, to be one order of magnitude larger than airline flows. However, their introduction into the worldwide model shows that the large scale pattern of the simulated epidemic exhibits only small variations with respect to the baseline case where only airline traffic is considered. The presence of short range mobility increases however the synchronization of subpopulations in close proximity and affects the epidemic behavior at the periphery of the airline transportation infrastructure. The present approach outlines the possibility for the definition of layered computational approaches where different modeling assumptions and granularities can be used consistently in a unifying multi-scale framework.Comment: 10 pages, 4 figures, 1 tabl

    Momentum-Dependent Mean Field Based Upon the Dirac-Brueckner Approach for Nuclear Matter

    Full text link
    A momentum-dependent mean field potential, suitable for application in the transport-model description of nucleus-nucleus collisions, is derived in a microscopic way. The derivation is based upon the Bonn meson-exchange model for the nucleon-nucleon interaction and the Dirac-Brueckner approach for nuclear matter. The properties of the microscopic mean field are examined and compared with phenomenological parametrizations which are commonly used in transport-model calculations.Comment: 15 pages text (RevTex) and 4 figures (postscript in a separate uuencoded file), UI-NTH-930

    Relativistic Hartree-Bogoliubov Approach for Nuclear Matter with Non-Linear Coupling Terms

    Get PDF
    We investigate the pairing property of nuclear matter with Relativistic Hartree-Bogoliubov(RHB) approach. Recently, the RHB approach has been widely applied to nuclear matter and finite nuclei. We have extended the RHB approach to be able to include non-linear coupling terms of mesons. In this paper we apply it to nuclear matter and observe the effect of non-linear terms on pairing gaps.Comment: 13 pages, 5 figure
    • …
    corecore