1,703 research outputs found

    High Input Impedance Voltage-Mode Universal Biquadratic Filters With Three Inputs Using Three CCs and Grounding Capacitors

    Get PDF
    Two current conveyors (CCs) based high input impedance voltage-mode universal biquadratic filters each with three input terminals and one output terminal are presented. The first circuit is composed of three differential voltage current conveyors (DVCCs), two grounded capacitors and four resistors. The second circuit is composed of two DVCCs, one differential difference current conveyor (DDCC), two grounded capacitors and four grounded resistors. The proposed circuits can realize all the standard filter functions, namely, lowpass, bandpass, highpass, notch and allpass filters by the selections of different input voltage terminals. The proposed circuits offer the features of high input impedance, using only grounded capacitors and low active and passive sensitivities. Moreover, the x ports of the DVCCs (or DDCC) in the proposed circuits are connected directly to resistors. This design offers the feature of a direct incorporation of the parasitic resistance at the x terminal of the DVCC (DDCC), Rx, as a part of the main resistance

    Effects of preservation method on canine (Canis lupus familiaris) fecal microbiota.

    Get PDF
    Studies involving gut microbiome analysis play an increasing role in the evaluation of health and disease in humans and animals alike. Fecal sampling methods for DNA preservation in laboratory, clinical, and field settings can greatly influence inferences of microbial composition and diversity, but are often inconsistent and under-investigated between studies. Many laboratories have utilized either temperature control or preservation buffers for optimization of DNA preservation, but few studies have evaluated the effects of combining both methods to preserve fecal microbiota. To determine the optimal method for fecal DNA preservation, we collected fecal samples from one canine donor and stored aliquots in RNAlater, 70% ethanol, 50:50 glycerol:PBS, or without buffer at 25 °C, 4 °C, and -80 °C. Fecal DNA was extracted, quantified, and 16S rRNA gene analysis performed on Days 0, 7, 14, and 56 to evaluate changes in DNA concentration, purity, and bacterial diversity and composition over time. We detected overall effects on bacterial community of storage buffer (F-value = 6.87, DF = 3, P < 0.001), storage temperature (F-value=1.77, DF = 3, P = 0.037), and duration of sample storage (F-value = 3.68, DF = 3, P < 0.001). Changes in bacterial composition were observed in samples stored in -80 °C without buffer, a commonly used method for fecal DNA storage, suggesting that simply freezing samples may be suboptimal for bacterial analysis. Fecal preservation with 70% ethanol and RNAlater closely resembled that of fresh samples, though RNAlater yielded significantly lower DNA concentrations (DF = 8.57, P < 0.001). Although bacterial composition varied with temperature and buffer storage, 70% ethanol was the best method for preserving bacterial DNA in canine feces, yielding the highest DNA concentration and minimal changes in bacterial diversity and composition. The differences observed between samples highlight the need to consider optimized post-collection methods in microbiome research

    Equilibrium vortex formation in ultrarapidly rotating two-component Bose-Einstein condensates

    Full text link
    Equilibrium vortex formation in rotating binary Bose gases with a rotating frequency higher than the harmonic trapping frequency is investigated theoretically. We consider the system being evaporatively cooled to form condensates and a combined numerical scheme is applied to ensure the binary system being in an authentic equilibrium state. To keep the system stable against the large centrifugal force of ultrafast rotation, a quartic trapping potential is added to the existing harmonic part. Using the Thomas-Fermi approximation, a critical rotating frequency \Omega_c is derived, which characterizes the structure with or without a central density hole. Vortex structures are studied in detail with rotation frequency both above and below ?\Omega_c and with respect to the miscible, symmetrically separated, and asymmetrically separated phases in their nonrotating ground-state counterparts.Comment: 7 pages, 7 figure

    Numerical and experimental analysis of vortex sheets behind lifting surfaces

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77273/1/AIAA-1992-409-534.pd

    Electronically Tunable Third-Order Quadrature Oscillator Using CDTAs

    Get PDF
    A current/voltage-mode third-order quadrature oscillator based on current differencing transconductance amplifiers (CDTAs) is presented in this paper. Outputs of two current-mode and two voltage-mode sinusoids each with 90o phase difference are available in the quadrature oscillator circuit. The oscillation condition and oscillation frequency are independently controllable. The proposed circuit employs only grounded capacitors and is ideal for integration. Simulation results are included to confirm the theoretical analysis

    Transcritical flow of a stratified fluid over topography: analysis of the forced Gardner equation

    Get PDF
    Transcritical flow of a stratified fluid past a broad localised topographic obstacle is studied analytically in the framework of the forced extended Korteweg--de Vries (eKdV), or Gardner, equation. We consider both possible signs for the cubic nonlinear term in the Gardner equation corresponding to different fluid density stratification profiles. We identify the range of the input parameters: the oncoming flow speed (the Froude number) and the topographic amplitude, for which the obstacle supports a stationary localised hydraulic transition from the subcritical flow upstream to the supercritical flow downstream. Such a localised transcritical flow is resolved back into the equilibrium flow state away from the obstacle with the aid of unsteady coherent nonlinear wave structures propagating upstream and downstream. Along with the regular, cnoidal undular bores occurring in the analogous problem for the single-layer flow modeled by the forced KdV equation, the transcritical internal wave flows support a diverse family of upstream and downstream wave structures, including solibores, rarefaction waves, reversed and trigonometric undular bores, which we describe using the recent development of the nonlinear modulation theory for the (unforced) Gardner equation. The predictions of the developed analytic construction are confirmed by direct numerical simulations of the forced Gardner equation for a broad range of input parameters.Comment: 34 pages, 24 figure

    Temporal response of mountain drainage basins in Taiwan to earthquake and typhoon perturbation.

    Get PDF
    In tectonically-active mountain belts, earthquake-triggered landslides deliver large amounts of sediment to rivers. In previous work, we have quantified the geomorphic impact of the 1999 Mw 7.6 Chi-Chi earthquake in Taiwan, which triggered >20,000 landslides and elevated suspended sediment loads in rivers by up to a factor of four. At the time, many coseismic landslides remained confined to hillslopes and, on the basis of four years of hydrometric data, we predicted that downslope transport of sediment would continue to occur during later storms. During the seven years since the Chi- Chi earthquake, several major typhoons storms have hit Taiwan (e.g., Typhoons Bilis, Toraji, Nari, Mindulle, Aere) and the Water Resources Agency of Taiwan has contin- ued to monitor water discharge and suspended sediment concentration. Here we use these new data to refine the spatial and temporal pattern of the decaying geomorphic response to the Chi-Chi earthquake in the face of several large typhoons. Our results indicate that the broad pattern of exponential decay in sediment concentration for a given river discharge (prevalent in winter seasons without typhoons) is punctuated by markedly elevated periods associated with typhoon storms. However, our analyses show that the change in unit sediment concentration (i.e., suspended sediment concen- tration for a unit water discharge) associated with each storm depends more strongly on the length of time elapsed since the earthquake than it does on the magnitude of the storm itself

    Deficiency in DNA repair in mouse lymphoma strain L5178Y-S.

    Full text link

    Identification and functional characterization of two patterning genes, Zic4 and Ten_m3, in topographic map formation of the visual pathway

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, February 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 114-123).A central feature of visual pathway development is its organization into retinotopic maps. The developmental process by which these maps form involves a transition from early patterning cues to arrays of axonal guidance factors allowing the relative order of retinotopic axons to be preserved. Mechanisms linking patterning molecules of early development to topographic wiring and subsequent functional responses are not well understood. In this thesis, I performed a microarray screen comparing gene expression in early visual and auditory regions of the thalamus in order to identify early patterning candidates with a potential role in visual pathway differentiation. Among the candidates enriched in the visual thalamus, the transcription factor, Zic4, was found to be expressed in gradients of the developing retina, lateral geniculate nucleus (LGN) and primary visual cortex (V 1). Mice lacking Zic4 exhibited a deficit in eye-specific patterning to the thalamus that was complementary to the phenotype seen in mice lacking Tenm3, a type II homophilic transmembrane receptor and transcriptional regulator. Using intrinsic signal optical imaging techniques, I characterized the functional properties of primary visual cortical retinotopic maps in Zic4 and Ten_m3 null mice and identified complementary changes in the ipsilateral representation of V1, as well as evidence for eye-specific mismatch in the cortical binocular zone. Additionally, complementary positional shifts in VI were found in these mutants identifying a bidirectional modulation of mapping mechanisms in the visual pathway.(cont.) In order to test whether Zic4 and Ten_m3 interact in serial or parallel pathways, I analyzed the retinogeniculate and cortical maps in the combination mutant. The Ten_m3/Zic4 double null mouse exhibited a partial rescue of retinogeniculate mapping and a complete reversal of the cortical changes found in either mutant alone, suggesting that the two genes interact to modulate common downstream effectors in opposite directions. In sum, this thesis presents a gene microarray screen used to identify Zic4 as a novel visual patterning gene, characterizes its loss-of-function phenotype on retinotopic mapping in the thalamus and cortex, and studies its antagonistic interaction with Ten_m3, another visual pathway patterning gene with a complementary loss-of-function phenotype.by Sam H. Horng.Ph.D
    corecore