86 research outputs found
First Isolation of Hepatitis E Virus Genotype 4 in Europe through Swine Surveillance in the Netherlands and Belgium
Hepatitis E virus (HEV) genotypes 3 and 4 are a cause of human hepatitis and swine are considered the main reservoir. To study the HEV prevalence and characterize circulating HEV strains, fecal samples from swine in the Netherlands and Belgium were tested by RT-PCR. HEV prevalence in swine was 7–15%. The Dutch strains were characterized as genotype 3, subgroups 3a, 3c and 3f, closely related to sequences found in humans and swine earlier. The HEV strains found in Belgium belonged to genotypes 3f and 4b. The HEV genotype 4 strain was the first ever reported in swine in Europe and an experimental infection in pigs was performed to isolate the virus. The genotype 4 strain readily infected piglets and caused fever and virus shedding. Since HEV4 infections have been reported to run a more severe clinical course in humans this observation may have public health implications
Effect of short-term versus long-term grassland management and seasonal variation in organic and conventional dairy farming on the composition of bulk tank milk
Bulk tank milk from 28 dairy farms was sampled every second month for 2 yr to assess the effects of grassland management, production system and season on milk fatty acid (FA) composition, concentrations of fat-soluble vitamins, Se, and milk sensory quality. Grassland management varied in terms of time since establishment. Short-term grassland management (SG) was defined as establishment or reseeding every fourth year or more often, and long-term grassland management (LG) was defined as less frequent establishment or reseeding. Fourteen organic (ORG) dairy farms with either short-term or long-term grassland management were paired with 14 conventional (CON) farms with respect to grassland management. Within ORG farms, SG farms differed from LG farms in herbage botanical composition, but not in concentrate FA concentrations, dry matter intake, or milk yield. Within CON farms, herbage composition, concentrate FA concentrations, dry matter intake, and milk yield showed no or insignificant variations. The ORG farms differed from CON farms in herbage botanical composition, concentrate FA concentrations, concentrate intake, and milk yield. Compared with ORG-LG farms, ORG-SG farms produced milk fat with higher proportions of C10:0 and C12:0 associated with higher herbage proportions of legumes (Fabaceae) and lower proportions of other dicotyledon families. Compared with milk from CON farms, milk fat from ORG farms had higher proportions of most saturated FA and all n-3 FA, but lower proportions of C18:0 and C18:1 cis-9 associated with higher forage proportion and differences in concentrations of FA in concentrates. Compared with the outdoor-feeding periods, the indoor feeding periods yielded milk fat with higher proportions of most short-chain and medium-chain FA and lower proportions of most C18-FA associated with grazing and higher forage proportions. Milk concentrations of α-tocopherol and β-carotene were lower during the grazing periods. Inclusion of fishmeal in organic concentrates may explain higher Se concentrations in organically produced milk. Milk sensory quality was not affected in this study. In conclusion, grassland management had minor effects on milk composition, and differences between ORG farms and CON farms may be explained by differences in concentrate intake and concentrate FA concentrations. Milk produced on ORG farms versus CON farms and milk produced during the outdoor versus indoor feeding periods had potential health benefits due to FA composition. In contrast, the higher milk-fat proportions of saturated FA in milk from ORG farms may be perceived as negative for human health
T(r)icky Environments: Higher Prevalence of Tick-Borne Zoonotic Pathogens in Rodents from Natural Areas Compared with Urban Areas.
Background: Urban areas are unique ecosystems with stark differences in species abundance and composition compared with natural ecosystems. These differences can affect pathogen transmission dynamics, thereby altering zoonotic pathogen prevalence and diversity. In this study, we screened small mammals from natural and urban areas in the Netherlands for up to 19 zoonotic pathogens, including viruses, bacteria, and protozoan parasites. Materials and Methods: In total, 578 small mammals were captured, including wood mice (Apodemus sylvaticus), bank voles (Myodes glareolus), yellow-necked mice (Apodemus flavicollis), house mice (Mus musculus), common voles (Microtus arvalis), and greater white-toothed shrews (Crocidura russula). We detected a wide variety of zoonotic pathogens in small mammals from both urban and natural areas. For a subset of these pathogens, in wood mice and bank voles, we then tested whether pathogen prevalence and diversity were associated with habitat type (i.e., natural versus urban), degree of greenness, and various host characteristics. Results: The prevalence of tick-borne zoonotic pathogens (Borrelia spp. and Neoehrlichia mikurensis) was significantly higher in wood mice from natural areas. In contrast, the prevalence of Bartonella spp. was higher in wood mice from urban areas, but this difference was not statistically significant. Pathogen diversity was higher in bank voles from natural habitats and increased with body weight for both rodent species, although this relationship depended on sex for bank voles. In addition, we detected methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase/AmpC-producing Escherichia coli, and lymphocytic choriomeningitis virus for the first time in rodents in the Netherlands. Discussion: The differences between natural and urban areas are likely related to differences in the abundance and diversity of arthropod vectors and vertebrate community composition. With increasing environmental encroachment and changes in urban land use (e.g., urban greening), it is important to better understand transmission dynamics of zoonotic pathogens in urban environments to reduce potential disease risks for public health
Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and associated humans in the Netherlands
In the first wave of the COVID-19 pandemic (April 2020), SARS-CoV-2 was detected in farmed minks and genomic sequencing was performed on mink farms and farm personnel. Here, we describe the outbreak and use sequence data with Bayesian phylodynamic methods to explore SARS-CoV-2 transmission in minks and humans on farms. High number of farm infections (68/126) in minks and farm workers (>50% of farms) were detected, with limited community spread. Three of five initial introductions of SARS-CoV-2 led to subsequent spread between mink farms until November 2020. Viruses belonging to the largest cluster acquired an amino acid substitution in the receptor binding domain of the Spike protein (position 486), evolved faster and spread longer and more widely. Movement of people and distance between farms were statistically significant predictors of virus dispersal between farms. Our study provides novel insights into SARS-CoV-2 transmission between mink farms and highlights the importance of combining genetic information with epidemiological information when investigating outbreaks at the animal-human interface
Effectiveness of Passive and Active Surveillance for Early Detection of SARS-CoV-2 in Mink during the 2020 Outbreak in the Netherlands
Starting December 2019, a novel coronavirus (SARS-CoV-2) spread among humans across the world. From 2020 onward, farmed mink were found susceptible to the virus. In this paper, we describe the Dutch surveillance system and the added surveillance components for early detection of SARS-CoV-2 outbreaks and their results in Dutch mink farms. In the Netherlands, a surveillance system was in place in which mink farmers could submit carcasses for postmortem evaluation and could contact a telephone helpdesk for veterinary advise. Through this system, the first SARS-CoV-2 outbreak in two mink farms was detected in April 2020. Immediately, the Dutch Ministry of Agriculture commissioned a consortium of statutory and research institutes to intensify the surveillance system. The program consisted of both passive surveillance, i.e., mandatory notifications and active surveillance components, i.e., serological screenings and weekly risk-based sampling of dead mink for early detection of new SARS-CoV-2 infections. When one of the surveillance components indicated a suspicion of a possible SARS-CoV-2 infection, follow-up samplings were conducted and at confirmation, all mink were culled. During 2020, 67 out of 124 mink farms that were under surveillance became infected with SARS-CoV-2 (54%). Of these, 31 were detected based on clinical signs (passive surveillance of clinical signs) and 36 were detected through active surveillance. From the mink farms with a new SARS-CoV-2 outbreak that was detected through the surveillance, in 19% of the farms (n = 7), the mink never showed any clinical signs of SARS-CoV-2 and might have been missed by the passive notification system. This study underlines the added value of a surveillance system that can quickly be intensified. The subsequent combination of both passive and active surveillance has shown to be effective in the early detection of emerging pathogens, which is important to minimize the risk of zoonotic spill-over
SARS-CoV-2 infection in cats and dogs in infected mink farms
Animals like mink, cats and dogs are susceptible to SARS-CoV-2 infection. In the Netherlands, 69 out of 127 mink farms were infected with SARS-CoV-2 between April and November 2020 and all mink on infected farms were culled after SARS-CoV-2 infection to prevent further spread of the virus. On some farms, (feral) cats and dogs were present. This study provides insight into the prevalence of SARS-CoV-2-positive cats and dogs in 10 infected mink farms and their possible role in transmission of the virus. Throat and rectal swabs of 101 cats (12 domestic and 89 feral cats) and 13 dogs of 10 farms were tested for SARS-CoV-2 using PCR. Serological assays were performed on serum samples from 62 adult cats and all 13 dogs. Whole Genome Sequencing was performed on one cat sample. Cat-to-mink transmission parameters were estimated using data from all 10 farms. This study shows evidence of SARS-CoV-2 infection in 12 feral cats and 2 dogs. Eleven cats (18%) and two dogs (15%) tested serologically positive. Three feral cats (3%) and one dog (8%) tested PCR-positive. The sequence generated from the cat throat swab clustered with mink sequences from the same farm. The calculated rate of mink-to-cat transmission showed that cats on average had a chance of 12% (95%CI 10%–18%) of becoming infected by mink, assuming no cat-to-cat transmission. As only feral cats were infected it is most likely that infections in cats were initiated by mink, not by humans. Whether both dogs were infected by mink or humans remains inconclusive. This study presents one of the first reports of interspecies transmission of SARS-CoV-2 that does not involve humans, namely mink-to-cat transmission, which should also be considered as a potential risk for spread of SARS-CoV-2
Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and related humans in the Netherlands
In the first wave of the COVID-19 pandemic (April 2020), SARS-CoV-2 was detected in farmed minks and genomic sequencing was performed on mink farms and farm personnel. Here, we describe the outbreak and use sequence data with Bayesian phylodynamic methods to explore SARS-CoV-2 transmission in minks and related humans on farms. High number of farm infections (68/126) in minks and farm related personnel (>50% of farms) were detected, with limited spread to the general human population. Three of five initial introductions of SARS-CoV-2 lead to subsequent spread between mink farms until November 2020. The largest cluster acquired a mutation in the receptor binding domain of the Spike protein (position 486), evolved faster and spread more widely and longer. Movement of people and distance between farms were statistically significant predictors of virus dispersal between farms. Our study provides novel insights into SARS-CoV-2 transmission between mink farms and highlights the importance of combing genetic information with epidemiological information at the animal-human interface
- …