1,456 research outputs found

    Can Maxwell's equations be obtained from the continuity equation?

    Full text link
    We formulate an existence theorem that states that given localized scalar and vector time-dependent sources satisfying the continuity equation, there exist two retarded fields that satisfy a set of four field equations. If the theorem is applied to the usual electromagnetic charge and current densities, the retarded fields are identified with the electric and magnetic fields and the associated field equations with Maxwell's equations. This application of the theorem suggests that charge conservation can be considered to be the fundamental assumption underlying Maxwell's equations.Comment: 14 pages. See the comment: "O. D. Jefimenko, Causal equations for electric and magnetic fields and Maxwell's equations: comment on a paper by Heras [Am. J. Phys. 76, 101 (2008)].

    Modulation of voltage-dependent K+ conductances in photoreceptors trades off investment in contrast gain for bandwidth

    Get PDF
    Modulation is essential for adjusting neurons to prevailing conditions and differing demands. Yet understanding how modulators adjust neuronal properties to alter information processing remains unclear, as is the impact of neuromodulation on energy consumption. Here we combine two computational models, one Hodgkin-Huxley type and the other analytic, to investigate the effects of neuromodulation upon Drosophila melanogaster photoreceptors. Voltage-dependent K+ conductances in these photoreceptors: (i) activate upon depolarisation to reduce membrane resistance and adjust bandwidth to functional requirements; (ii) produce negative feedback to increase bandwidth in an energy efficient way; (iii) produce shunt-peaking thereby increasing the membrane gain bandwidth product; and (iv) inactivate to amplify low frequencies. Through their effects on the voltage-dependent K+ conductances, three modulators, serotonin, calmodulin and PIP2, trade-off contrast gain against membrane bandwidth. Serotonin shifts the photoreceptor performance towards higher contrast gains and lower membrane bandwidths, whereas PIP2 and calmodulin shift performance towards lower contrast gains and higher membrane bandwidths. These neuromodulators have little effect upon the overall energy consumed by photoreceptors, instead they redistribute the energy invested in gain versus bandwidth. This demonstrates how modulators can shift neuronal information processing within the limitations of biophysics and energy consumption

    Enhancement of TbIII-CuII single-molecule magnet performance through structural modification

    Get PDF
    We report a series of 3d–4f complexes {Ln2Cu3(H3L)2Xn} (X=OAc−, Ln=Gd, Tb or X=NO3−, Ln=Gd, Tb, Dy, Ho, Er) using the 2,2′-(propane-1,3-diyldiimino)bis[2-(hydroxylmethyl)propane-1,3-diol] (H6L) pro-ligand. All complexes, except that in which Ln=Gd, show slow magnetic relaxation in zero applied dc field. A remarkable improvement of the energy barrier to reorientation of the magnetisation in the {Tb2Cu3(H3L)2Xn} complexes is seen by changing the auxiliary ligands (X=OAc− for NO3−). This leads to the largest reported relaxation barrier in zero applied dc field for a Tb/Cu-based single-molecule magnet. Ab initio CASSCF calculations performed on mononuclear TbIII models are employed to understand the increase in energy barrier and the calculations suggest that the difference stems from a change in the TbIII coordination environment (C4v versus Cs)

    Medición de presión intraocular con el tonómetro Proview®

    Get PDF
    Purpose: To evaluate a new ocular tonometer (Proview®) which functions by visualizing a phosphene after putting pressure on the upper eyelid. To ascertain its accuracy and reproducibility with respect to the Goldmann tonometer (GT). Methods: A study on both eyes of 110 non-selected patients was performed. One measurement with GT and three subsequent measurements with Proview® were taken by the same investigator. The number of failed attempts to visualize the phosphene was recorded. We evaluated each eye separately to observe the possible learning effect. Results: The intraocular pressure (IOP) mean with Proview® is 5 mm Hg higher than the GT (p0.05). Conclusions: The Proview® tonometer showed low accuracy and reproducibility in comparison with the GT. This tonometer requires a long learning process before phosphene visualization. The results demonstrated that this tonometer is not clinically useful, except in patients with serious corneal diseases which make measurement with GT very difficul

    Variabilidad en la presentación del Síndrome de Brown-McLean

    Get PDF
    Case report: We report two aphakic patients with Brown-McLean syndrome. Discussion: One patient was affected by Marfan syndrome, after having undergone lens subluxation surgery and aphakia 23 years previously. The other patient was aphakic due to cataract surgery with complications three years before. Our cases demonstrate that this syndrome can show a variety of clinical characteristics, but peripheral corneal edema is always present. A full understanding of the clinical signs of presentation is of great importance in order to detect this syndrom

    Geo‐Hydromorphological Assessment of Europe’s Southernmost Blanket Bogs

    Get PDF
    Blanket bogs are a globally rare type of ombrotrophic peatland internationally recognised for long‐term terrestrial carbon storage, the potential to serve as carbon sinks, habitat provision and for their palaeoenvironmental archive. This habitat is protected in the European Union under the Habitats Directive (92/43/EEC), but a number of blanket bogs located in the Cantabrian Mountains (northern Spain), representing the southernmost known edge‐of‐range for this habitat in Europe, are currently not recognised and are at increased threat of loss. Using climatic data, topography, aerial photography and peat depth surveys, this study has identified ten new areas of blanket bog located between the administrative regions of Cantabria and Castilla y León. Peat depth data and topography were used to provide a detailed geomorphological description and hydromorphological classification (mesotope units) of these currently unrecognised areas of blanket bog. Maximum peat depth measured across the ten sites ranged from 1.61 m to 3.78 m covering a total area of 18.6 ha of blanket bog (> 40 cm peat depth). The volume of peat accumulated across the sites was determined to be more than 216,000 m3 and is estimated to hold 19.89 ± 3.51kt C. Twenty‐four individual hydrological mesotope units were described indicating a diverse assemblage of blanket bogs in this region. The peatlands identified in this research extend the known limit of blanket bogs in Europe farther south than previously recorded and combined with four other unprotected blanket bogs recently identified in the Cantabrian Mountains, these peatlands represent 10.5% of blanket bog currently recognised and protected in Spain. The range of anthropogenic pressures currently acting on peatlands in the Cantabrian Mountains indicates that without protection these important landforms and carbon stored may be lost. An urgent update of European peatland inventories is thus required to preserve these valuable carbon stores and potential carbon sinks

    The exact Darwin Lagrangian

    Get PDF
    Darwin (1920) noted that when radiation can be neglected it should be possible to eliminate the radiation degrees-of-freedom from the action of classical electrodynamics and keep the discrete particle degrees-of-freedom only. Darwin derived his well known Lagrangian by series expansion in v/cv/c keeping terms up to order (v/c)2(v/c)^2. Since radiation is due to acceleration the assumption of low speed should not be necessary. A Lagrangian is suggested that neglects radiation without assuming low speed. It cures deficiencies of the Darwin Lagrangian in the ultra-relativistic regime.Comment: 2.5 pages, no figure

    Gravitational waves from inspiralling compact binaries with magnetic dipole moments

    Full text link
    We investigate the effects of the magnetic dipole-dipole coupling and the electromagnetic radiation on the frequency evolution of gravitational waves from inspiralling binary neutron stars with magnetic dipole moments. This study is motivated by the discovery of the superstrongly magnetized neutron stars, i.e., magnetar. We derive the contributions of the magnetic fields to the accumulated cycles in gravitational waves as Nmag6×103(H/1016G)2N_{mag} \sim 6 \times 10^{-3} (H/10^{16}{\rm G})^{2}, where HH denotes the strength of the polar magnetic fields of each neutron star in the binary system. It is found that the effects of the magnetic fields will be negligible for the detection and the parameter estimation of gravitational waves, if the upper limit for magnetic fields of neutron stars are less than 1016\sim 10^{16}G, which is the maximum magnetic field observed in the soft gamma repeaters and the anomalous X-ray pulsars up to date. We also discuss the implications of electromagnetic radiation from the inspiralling binary neutron stars for the precursory X-ray emission prior to the gamma ray burst observed by the Ginga satellite.Comment: 15 pages, no figures, accepted for publication in Ap
    corecore