605 research outputs found

    Theory of Metal-Insulator Transition in PrRu4P12 and PrFe4P12

    Full text link
    All symmetry allowed couplings between the 4f^2-electron ground state doublet of trivalent praseodymium in PrRu4P12 and PrFe4P12 and displacements of the phosphorus, iron or ruthenium ions are considered. Two types of displacements can change the crystal lattice from body-centred cubic to simple orthorhombic or to simple cubic. The first type lowers the point group symmetry from tetrahedral to orthorhombic, while the second type leaves it unchanged, with corresponding space group reductions Im3 --> Pmmm and Im3 --> Pm3 respectively. In former case, the lower point-group symmetry splits the degeneracy of the 4f^2 doublet into states with opposite quadrupole moment, which then leads to anti-quadrupolar ordering, as in PrFe4P12. Either kind of displacement may conspire with nesting of the Fermi surface to cause the metal-insulator or partial metal-insulator transition observed in PrFe4P12 and PrRu4P12. We investigate this scenario using band-structure calculations, and it is found that displacements of the phosphorus ions in PrRu4P12 (with space group reduction Im3 --> Pm3) open a gap everywhere on the Fermi surface.Comment: 6 page

    Quasi-Kondo Phenomenon due to Dynamical Jahn-Teller Effect

    Full text link
    A mechanism of non-magnetic Kondo effect is proposed on the basis of a multiorbital Anderson model coupled with dynamical Jahn-Teller (JT) phonons. An electron system coupled dynamically with JT phonons has a vibronic ground state with double degeneracy due to clockwise and anti-clockwise rotational modes with entropy of log2\log 2. When a temperature is lower than a characteristic energy to turn the rotational direction, the rotational degree of freedom is eventually suppressed and the corresponding entropy log2\log 2 is released, leading to quasi-Kondo behavior. We discuss possible relevance of this quasi-Kondo phenomenon to electronic properties of filled skutterudites.Comment: 4 pages, 3 figure

    Interpretation of the angular dependence of the de Haas-van Alphen effect in MgB_2

    Full text link
    We present detailed results for the amplitude and field dependence of the de Haas-van Alphen (dHvA) signal arising from the electron-like π\pi sheet of Fermi surface in MgB_2. Our data and analysis show that the dip in dHvA amplitude when the field is close to the basal plane is caused by a beat between two very similar dHvA frequencies and not a spin-zero effect as previously assumed. Our results imply that the Stoner enhancement factors in MgB_2 are small on both the Sigma and Pi sheets.Comment: 4 pages with figures. Submitted to PR

    Role of p-f Hybridization in the Metal-Non-Metal Transition of PrRu4P12

    Full text link
    Electronic state evolution in the metal-non-metal transition of PrRu4P12 has been studied by X-ray and polarized neutron diffraction experiments. It has been revealed that, in the low-temperature non-metallic phase, two inequivalent crystal-field (CF) schemes of Pr3+ 4f^2 electrons with Gamma_1 and Gamma_4^(2) ground states are located at Pr1 and Pr2 sites forming the bcc unit cell surrounded by the smaller and larger cubic Ru-ion sublattices, respectively. This modulated electronic state can be explained by the p-f hybridization mechanism taking two intermediate states of 4f^1 and 4f^3. The p-f hybridization effect plays an important role for the electronic energy gain in the metal-non-metal transition originated from the Fermi surface nesting.Comment: 5 pages, 5 figures. Accepted by J. Phys. Soc. Jp

    Fermi surface of the filled-skutterudite superconductor LaRu4P12: A clue to the origin of the metal-insulator transition in PrRu4P12

    Full text link
    We report the de Haas-van Alphen (dHvA) effect and magnetoresistance in the filled-skutterudite superconductor LaRu4P12, which is a reference material of PrRu4P12 that exhibits a metal-insulator (M-I) transition at T_MI~60 K. The observed dHvA branches for the main Fermi surface (FS) are well explained by the band-structure calculation, using the full potential linearized augmented-plane-wave method with the local-density approximation, suggesting a nesting instability with q =(1,0,0) in the main multiply connected FS as expected also in PrRu4P12. Observed cyclotron effective masses of (2.6-11.8)m_0, which are roughly twice the calculated masses, indicate the large mass enhancement even in the La-skutterudites. Comparing the FS between LaRu4P12 and PrRu4P12, an essential role of c-f hybridization cooperating with the FS nesting in driving the the M-I transition in PrRu4P12 has been clarified.Comment: Appeared in Physical Review

    Charge-Density-Wave Ordering in the Metal-Insulator Transition Compound PrRu4P12

    Get PDF
    X-ray and electron diffraction measurements on the metal-insulator (M-I) transition compound PrRu4_4P12_{12} have revealed the emergence of a periodic ordering of charge density around the Pr atoms. It is found that the ordering is associated with the onset of a low temperature insulator phase. These conclusions are supported by the facts that the space group of the crystal structure transforms from Im3ˉ\bar{3} to Pm3ˉ\bar{3} below the M-I transition temperature and also that the temperature dependence of the superlattice peaks in the insulator phase follows the squared BCS function. The M-I transition could be originated from the perfect nesting of the Fermi surface and/or the instability of the ff electrons.Comment: 4 pages, 5 figures, Phys. Rev. B (2004) (in press

    Drastic change in transport of entropy with quadrupolar ordering in PrFe4_{4}P12_{12}

    Full text link
    The antiferroquadrupolar ordering of PrFe4_{4}P12_{12} is explored by probing thermal and thermoelectric transport. The lattice thermal conductivity drastically increases with the ordering, as a consequence of a large drop in carrier concentration and a strong electron-phonon coupling. The low level of carrier density in the ordered state is confirmed by the anomalously large values of the Seebeck and Nernst coefficients. The results are reminiscent of URu2_{2}Si2_{2} and suggest that both belong to the same class of aborted metal-insulator transitions. The magnitude of the Nernst coefficient, larger than in any other metal, indicates a new route for Ettingshaussen cooling at Kelvin temperatures.Comment: final published versio

    Specific heat evidence for two-gap superconductivity in ternary-iron silicide Lu2_{2}Fe3_{3}Si5_{5}

    Full text link
    We report low-temperature specific heat studies on single-crystalline ternary-iron silicide superconductor Lu2_{2}Fe3_{3}Si5_{5} withTcT_c = 6.1 K down to Tc/20\sim T_c/20. We confirm a reduced normalized jump in specific heat at TcT_c, and find that the specific heat divided by temperature C/TC/T shows sudden drop at Tc/5\sim T_c/5 and goes to zero with further decreasing temperature. These results indicate the presence of two distinct superconducting gaps in Lu2_{2}Fe3_{3}Si5_{5}, similar to a typical two-gap superconductor MgB2_{2}. We also report Hall coefficients, band structure calculation, and the anisotropy of upper critical fields for Lu2_{2}Fe3_{3}Si5_{5}, which support the anisotropic multiband nature and reinforce the existence of two superconducting gaps in Lu2_{2}Fe3_{3}Si5_{5}.Comment: 5 pages, 5 figure
    corecore