6,277 research outputs found

    The Patent Paradox Revisited: Determinants of Patenting in the US Semiconductor Industry, 1980-94

    Get PDF
    This paper examines the patenting behavior of firms in an industry characterized by rapid technological change and cumulative innovation. Recent evidence suggests that semiconductor firms do not rely heavily on patents, despite the strengthening of US patent rights in the early 1980s. Yet the propensity of semiconductor firms to patent has risen dramatically over the past decade. This paper explores this apparent paradox by analyzing the patenting activities of almost 100 US semiconductor firms during 1980-94. The results suggest that stronger patents may have facilitated entry by firms in niche product markets, while spawning patent portfolio races' among capital-intensive firms.

    A detailed soil survey of the Mbita Area

    Get PDF

    The organization of 2,3-iron-naphthalocyanine molecules on substrate as revealed by scanning tunneling microscopy

    Get PDF
    Surface morphology of thin molecular layer of 2,3-Iron-naphthalocyanine (2,3 FeNPc) was studied by scanning tunneling microscopy (STM) at the ambient conditions. Organic layer with thickness of 40 nm was vapour phase deposited on amorphous carbon substrate. The STM images have revealed the pecularities of surface molecular organization from large range (hundreds of nm) down to atomic scale. Arrays of locally ordered linear stuctures have been distinguished as the main morphological features of the examined surface. At several places the well-ordered STM patterns have been distinguished at the atomic scale. They can be described as stacks of periodicity approximatelly 0.4 nm in a row and 1.5 nm between stacks. These results can be explained by arrangement of 2,3-FeNPh molecules in stacks with a main plane being perpendicular to the substrate surface

    Exotic quark effects on the Higgs sector of the USSM at the LHC

    Full text link
    The Higgs sector of the U(1)-extended supersymmetric model is studied with great detail. We calculate the masses of the Higgs bosons at the one-loop level. We also calculate at the one-loop level the gluon-involving processes for the productions and decays of the scalar Higgs bosons of the model at the energy of the CERN Large Hadron Collider (LHC), where the radiative corrections due to the loops of top, bottom, and exotic quarks and their scalar partners are taken into account. We find that the exotic quark and exotic scalar quarks in the model may manifest themselves at the LHC, since the production of the heaviest scalar Higgs boson via gluon fusion processes is mediated virtually by the loops of exotic quark and exotic scalar quarks, for a reasonable parameter set of the model.Comment: 36 pages, 13 figures, JP

    Explosive Ballooning Flux Tubes in Tokamaks

    Full text link
    Tokamak stability to, potentially explosive, `ballooning' displacements of elliptical magnetic flux tubes is examined in large aspect ratio equilibrium. Above a critical pressure gradient the energy stored in the plasma may be lowered by finite (but not infinitesimal) displacements of such tubes (metastability). Above a higher pressure gradient, the linear stability boundary, such tubes are linearly and nonlinearly unstable. The flux tube displacement can be of the order of the pressure gradient scale length. Plasma transport from displaced flux tubes may result in rapid loss of confinement.Comment: 4 pages, 6 figure

    Generation of macroscopic superposition states with small nonlinearity

    Get PDF
    We suggest a scheme to generate a macroscopic superposition state (Schrodinger cat state) of a free-propagating optical field using a beam splitter, homodyne measurement and a very small Kerr nonlinear effect. Our scheme makes it possible to considerably reduce the required nonlinear effect to generate an optical cat state using simple and efficient optical elements.Comment: Significantly improved version, to be published in PRA as a Rapid Communicatio
    • …
    corecore