24 research outputs found
Thermal effects in the magnetic Casimir-Polder interaction
We investigate the magnetic dipole coupling between a metallic surface and an
atom in a thermal state, ground state and excited hyperine state. This
interaction results in a repulsive correction and - unlike the electrical
dipole contribution - depends sensitively on the Ohmic dissipation in the
material
Optical BCS conductivity at imaginary frequencies and dispersion energies of superconductors
We present an efficient expression for the analytic continuation to arbitrary
complex frequencies of the complex optical and AC conductivity of a homogeneous
superconductor with arbitrary mean free path. Knowledge of this quantity is
fundamental in the calculation of thermodynamic potentials and dispersion
energies involving type-I superconducting bodies. When considered for imaginary
frequencies, our formula evaluates faster than previous schemes involving
Kramers--Kronig transforms. A number of applications illustrates its
efficiency: a simplified low-frequency expansion of the conductivity, the
electromagnetic bulk self-energy due to longitudinal plasma oscillations, and
the Casimir free energy of a superconducting cavity.Comment: 20 pages, 7 figures, calculation of Casimir energy adde
Temperature dependence of the magnetic Casimir-Polder interaction
We analyze the magnetic dipole contribution to atom-surface dispersion
forces. Unlike its electrical counterpart, it involves small transition
frequencies that are comparable to thermal energy scales. A significant
temperature dependence is found near surfaces with a nonzero DC conductivity,
leading to a strong suppression of the dispersion force at T > 0. We use
thermal response theory for the surface material and discuss both normal metals
and superconductors. The asymptotes of the free energy of interaction and of
the entropy are calculated analytically over a large range of distances. Near a
superconductor, the onset of dissipation at the phase transition strongly
changes the interaction, including a discontinuous entropy. We discuss the
similarities with the Casimir interaction beween two surfaces and suggest that
precision measurements of the atom-surface interaction may shed new light upon
open questions around the temperature dependence of dispersion forces between
lossy media.Comment: 11 figure
Dynamical Casimir-Polder interaction between an atom and surface plasmons
We investigate the time-dependent Casimir-Polder potential of a polarizable
two-level atom placed near a surface of arbitrary material, after a sudden
change in the parameters of the system. Different initial conditions are taken
into account. For an initially bare ground-state atom, the time-dependent
Casimir-Polder energy reveals how the atom is "being dressed" by virtual,
matter-assisted photons. We also study the transient behavior of the
Casimir-Polder interaction between the atom and the surface starting from a
partially dressed state, after an externally induced change in the atomic level
structure or transition dipoles. The Heisenberg equations are solved through an
iterative technique for both atomic and field operators in the medium-assisted
electromagnetic field quantization scheme. We analyze in particular how the
time evolution of the interaction energy depends on the optical properties of
the surface, in particular on the dispersion relationof surface plasmon
polaritons. The physical significance and the limits of validity of the
obtained results are discussed in detail.Comment: 12 pages, 8 figure
Squeezed Light from Entangled Nonidentical Emitters via Nanophotonic Environments
We propose a scheme in which broadband nanostructures allow for an enhanced two-photon nonlinearity that generates squeezed light from far-detuned quantum emitters via collective resonance fluorescence. To illustrate the proposal, we consider a pair of two-level emitters detuned by 400 line widths that are coupled by a plasmonic nanosphere. It is shown that the reduced fluctuations of the electromagnetic field arising from the interaction between the emitters provide a means to detect their entanglement. Due to the near-field enhancement in the proposed hybrid systems, these nonclassical effects can be encountered outside both the extremely close separations limiting the observation in free space and narrow frequency bands in high-Q cavities. Our approach permits overcoming the fundamental limitations to the generation of squeezed light from noninteracting single emitters and is more robust against phase decoherence induced by the environment
The squeezing spectrum of a quantum emitter coupled to an optical nanostructure
We analyze the spectral properties of the reduced quantum fluctuations arising from a single two-level emitter coupled to an optical nanostructure. A closed expression for the squeezing spectrum in this hybrid system is presented that includes the effect of additional phase decoherence. We consider a metallic nanoantenna to illustrate how the hybrid system can increase the bandwidth and overcome the limits to the generation of such spectral squeezing in terms of driving field intensity and the effect of pure dephasing
Polaritonic normal-mode splitting and light localization in a one-dimensional nanoguide
We theoretically investigate the interaction of light and a collection of emitters in a subwavelength one-dimensional medium (nanoguide), where enhanced emitter-photon coupling leads to efficient multiple scattering of photons. We show that the spectrum of the transmitted light undergoes normal-mode splitting even though no external cavity resonance is employed. By considering densities much higher than those encountered in cold atom experiments, we study the influence of the near-field dipole coupling and disorder on the resulting complex super-radiant and subradiant polaritonic states. In particular, we provide evidence for the longitudinal localization of light in a one-dimensional open system and provide a polaritonic phase diagram. Our results motivate a number of experiments, where new coherent superposition states of light and matter can be realized in the solid state
Polaritonic normal-mode splitting and light localization in a one-dimensional nanoguide
We theoretically investigate the interaction of light and a collection of emitters in a subwavelength one-dimensional medium (nanoguide), where enhanced emitter-photon coupling leads to efficient multiple scattering of photons. We show that the spectrum of the transmitted light undergoes normal-mode splitting even though no external cavity resonance is employed. By considering densities much higher than those encountered in cold atom experiments, we study the influence of the near-field dipole coupling and disorder on the resulting complex super-radiant and subradiant polaritonic states. In particular, we provide evidence for the longitudinal localization of light in a one-dimensional open system and provide a polaritonic phase diagram. Our results motivate a number of experiments, where new coherent superposition states of light and matter can be realized in the solid state
Small slot waveguide rings for on-chip quantum optical circuits
Nanophotonic interfaces between single emitters and light promise to enable new quantum optical technologies. Here, we use a combination of finite element simulations and analytic quantum theory to investigate the interaction of various quantum emitters with slot-waveguide rings. We predict that for rings with radii as small as 1.44 mu m, with a Q-factor of 27,900, near-unity emitter-waveguide coupling efficiencies and emission enhancements on the order of 1300 can be achieved. By tuning the ring geometry or introducing losses, we show that realistic emitter-ring systems can be made to be either weakly or strongly coupled, so that we can observe Rabi oscillations in the decay dynamics even for micron-sized rings. Moreover, we demonstrate that slot waveguide rings can be used to directionally couple emission, again with near-unity efficiency. Our results pave the way for integrated solid-state quantum circuits involving various emitters. (C) 2017 Optical Society of Americ