29 research outputs found

    Structure of the solar photosphere studied from the radiation hydrodynamics code ANTARES

    Full text link
    The ANTARES radiation hydrodynamics code is capable of simulating the solar granulation in detail unequaled by direct observation. We introduce a state-of-the-art numerical tool to the solar physics community and demonstrate its applicability to model the solar granulation. The code is based on the weighted essentially non-oscillatory finite volume method and by its implementation of local mesh refinement is also capable of simulating turbulent fluids. While the ANTARES code already provides promising insights into small-scale dynamical processes occurring in the quiet-Sun photosphere, it will soon be capable of modeling the latter in the scope of radiation magnetohydrodynamics. In this first preliminary study we focus on the vertical photospheric stratification by examining a 3-D model photosphere with an evolution time much larger than the dynamical timescales of the solar granulation and of particular large horizontal extent corresponding to 25 ⁣" ⁣ ⁣×25 ⁣"25\!" \!\! \times \, 25\!" on the solar surface to smooth out horizontal spatial inhomogeneities separately for up- and downflows. The highly resolved Cartesian grid thereby covers 4 Mm\sim 4~\mathrm{Mm} of the upper convection zone and the adjacent photosphere. Correlation analysis, both local and two-point, provides a suitable means to probe the photospheric structure and thereby to identify several layers of characteristic dynamics: The thermal convection zone is found to reach some ten kilometers above the solar surface, while convectively overshooting gas penetrates even higher into the low photosphere. An 145km\approx 145\,\mathrm{km} wide transition layer separates the convective from the oscillatory layers in the higher photosphere.Comment: Accepted for publication in Astrophysics and Space Science; 18 pages, 12 figures, 2 tables; typos correcte

    Detection of small convective patterns in observations and simulations

    Get PDF
    Recent results from high resolution solar granulation observations indicate the existence of a population of small granular cells on scales below 600 km in diameter, located in the intergranular lanes. We studied a set of Hinode SOT images and high resolution radiation hydrodynamics simulations in order to analyze small granular cells and to study their physical properties. An automated image segmentation algorithm specifically adapted to high resolution simulations for the identification of granules was developed. The algorithm was also used to analyze and compare physical quantities provided by the simulation and the observations. We found that small granules make a distinct contribution to the total area of granules. Both in observations and simulations, small granular cells exhibit on average lower intensities and vertical velocities

    Efficient Characterization and Modelling of the Nonlinear Behaviour of LFT for Crash Simulations

    Get PDF
    Modeling the nonlinear material behaviour of long fiber reinforced thermoplastics (LFT) presents a challenging task since local inhomogeneities and nonlinear effects must be taken into account also on the microscale. We present a computational method with which we can predict the nonlinear material response of a composite material using only standard DMA measurements on the pure polymer matrix material. The material models considered include plasticity, damage, viscoelasticity, and viscoplasticity as described in [1]. These models can be combined similar to the model from [2] and extended to the composite by assigning linear elastic properties to the fibers. The mechanical response of the composite is computed using an FFT-based technique [3]. The geometry of the composite, in particular the fiber orientation, can be characterized using injection molding simulations or micro CT scans. We create virtual models of the composite using the algorithm of [4]. We show that with this method, the material behaviour of the composite can be predicted while the experimental complexity needed for the material characterization is low

    Runtime optimization of a memory efficient CG solver for FFT-based homogenization: Implementation details and scaling results for linear elasticity

    No full text
    The memory efficient CG algorithm of Kabel et al. (Comput Mech 54(6):1497–1514, 2014) reduces the memory requirements of a strain based implementation of the CG algorithm following Zeman et al. (J Comput Phys 229(21):8065–8071, 2010) for solving the equations of linear elasticity by 40%. But since the Fourier wave vectors have to be recalculated at several steps of the memory efficient algorithm, the runtime increases for a straightforward implementation.. We explain how to reduce the runtime overhead to a negligible size, and show that the memory efficient algorithm scales better than the standard algorithm with up to 256 MPI processes

    Millenarian thought in Renaissance Rome with special reference to Pietro Galatino (c.1464-c.1540) and Egidio da Viterbo (c.1469-1532)

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DX194112 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Solar p-mode damping rates: Insight from a 3D hydrodynamical simulation

    Get PDF
    International audienceSpace-borne missions such as CoRoT and Kepler have provided a rich harvest of high-quality photometric data for solar-like pulsators. It is now possible to measure damping rates for hundreds of main-sequence and thousands of red-giant stars with an unprecedented precision. However, among the seismic parameters, mode damping rates remain poorly understood and thus barely used for inferring the physical properties of stars. Previous approaches to model mode damping rates were based on mixing-length theory or a Reynolds-stress approach to model turbulent convection. While they can be used to grasp the main physics of the problem, such approaches are of little help to provide quantitative estimates as well as a definitive answer on the relative contribution of each physical mechanism. Indeed, due to the high complexity of the turbulent flow and its interplay with the oscillations, those theories rely on many free parameters which inhibits an in-depth understanding of the problem. Our aim is thus to assess the ability of 3D hydrodynamical simulations to infer the physical mechanisms responsible for damping of solar-like oscillations. To this end, a solar high-spatial resolution and long-duration hydrodynamical 3D simulation computed with the ANTARES code allows probing the coupling between turbulent convection and the normal modes of the simulated box. Indeed, normal modes of the simulation experience realistic driving and damping in the super-adiabatic layers of the simulation. Therefore, investigating the properties of the normal modes in the simulation provides a unique insight into the mode physics. We demonstrate that such an approach provides constraints on the solar damping rates and is able to disentangle the relative contribution related to the perturbation (by the oscillation) of the turbulent pressure, the gas pressure, the radiative flux, and the convective flux contributions. Finally, we conclude that using the normal modes of a 3D numerical simulation is possible and is potentially able to unveil the respective role of the different physical mechanisms responsible for mode damping provided the time-duration of the simulation is long enough
    corecore