140 research outputs found

    A week-end off: the first extensive number-theoretical computation on the ENIAC

    Get PDF
    The first extensive number-theoretical computation run on the ENIAC, is reconstructed. The problem, computing the exponent of 2 modulo a prime, was set up on the ENIAC during a week-end in July 1946 by the number-theorist D.H. Lehmer, with help from his wife Emma and John Mauchly. Important aspects of the ENIAC's design are presented-and the reconstruction of the implementation of the problem on the ENIAC is discussed in its salient points

    Hypercomplex quantum mechanics

    Full text link
    The fundamental axioms of the quantum theory do not explicitly identify the algebraic structure of the linear space for which orthogonal subspaces correspond to the propositions (equivalence classes of physical questions). The projective geometry of the weakly modular orthocomplemented lattice of propositions may be imbedded in a complex Hilbert space; this is the structure which has traditionally been used. This paper reviews some work which has been devoted to generalizing the target space of this imbedding to Hilbert modules of a more general type. In particular, detailed discussion is given of the simplest generalization of the complex Hilbert space, that of the quaternion Hilbert module.Comment: Plain Tex, 11 page

    On Measuring Non-Recursive Trade-Offs

    Full text link
    We investigate the phenomenon of non-recursive trade-offs between descriptional systems in an abstract fashion. We aim at categorizing non-recursive trade-offs by bounds on their growth rate, and show how to deduce such bounds in general. We also identify criteria which, in the spirit of abstract language theory, allow us to deduce non-recursive tradeoffs from effective closure properties of language families on the one hand, and differences in the decidability status of basic decision problems on the other. We develop a qualitative classification of non-recursive trade-offs in order to obtain a better understanding of this very fundamental behaviour of descriptional systems

    Small ball probability, Inverse theorems, and applications

    Full text link
    Let ξ\xi be a real random variable with mean zero and variance one and A=a1,...,anA={a_1,...,a_n} be a multi-set in Rd\R^d. The random sum SA:=a1ξ1+...+anξnS_A := a_1 \xi_1 + ... + a_n \xi_n where ξi\xi_i are iid copies of ξ\xi is of fundamental importance in probability and its applications. We discuss the small ball problem, the aim of which is to estimate the maximum probability that SAS_A belongs to a ball with given small radius, following the discovery made by Littlewood-Offord and Erdos almost 70 years ago. We will mainly focus on recent developments that characterize the structure of those sets AA where the small ball probability is relatively large. Applications of these results include full solutions or significant progresses of many open problems in different areas.Comment: 47 page

    The new mythologies and premature aging in the youth culture

    Full text link
    Comparative studies of aging men in a variety of preliterate traditional societies suggest that older men, across cultures, are relatively mild and uncompetitive, as compared to younger men from the same communities. Older men are more interested in receiving than in producing, more interested in communion than in agency; their sense of pleasure and security is based on food, religion, and the assurance of love. The counterculture gives priority to the same themes, and thereby seems to sponsor a premature senescence, in the psychological sense. Various contemporary myths stemming from affluence and consumerism that have led to the new geriatrics are examined, particularly the myth of the all-including, omnipotential self, which is seen as a translation of socialist, collectivist ideals into the domain of personality. The effects of the new psychic collectivism on ego development in the adolescent and postadolescent periods are also considered.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45279/1/10964_2005_Article_BF02214091.pd

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology

    The theorem of Hildebrandt

    No full text

    A history of the calculus of variations from the 17th through the 19th century

    No full text

    Computers--Work in progress

    No full text
    • …
    corecore