11,447 research outputs found

    General solution of an exact correlation function factorization in conformal field theory

    Full text link
    We discuss a correlation function factorization, which relates a three-point function to the square root of three two-point functions. This factorization is known to hold for certain scaling operators at the two-dimensional percolation point and in a few other cases. The correlation functions are evaluated in the upper half-plane (or any conformally equivalent region) with operators at two arbitrary points on the real axis, and a third arbitrary point on either the real axis or in the interior. This type of result is of interest because it is both exact and universal, relates higher-order correlation functions to lower-order ones, and has a simple interpretation in terms of cluster or loop probabilities in several statistical models. This motivated us to use the techniques of conformal field theory to determine the general conditions for its validity. Here, we discover a correlation function which factorizes in this way for any central charge c, generalizing previous results. In particular, the factorization holds for either FK (Fortuin-Kasteleyn) or spin clusters in the Q-state Potts models; it also applies to either the dense or dilute phases of the O(n) loop models. Further, only one other non-trivial set of highest-weight operators (in an irreducible Verma module) factorizes in this way. In this case the operators have negative dimension (for c < 1) and do not seem to have a physical realization.Comment: 7 pages, 1 figure, v2 minor revision

    Measurement of temperature profiles in hot gases and flames

    Get PDF
    Computer program was written for calculation of molecular radiative transfer from hot gases. Shape of temperature profile was approximated in terms of simple geometric forms so profile could be characterized in terms of few parameters. Parameters were adjusted in calculations using appropriate radiative-transfer expression until best fit was obtained with observed spectra

    Factorization of correlations in two-dimensional percolation on the plane and torus

    Full text link
    Recently, Delfino and Viti have examined the factorization of the three-point density correlation function P_3 at the percolation point in terms of the two-point density correlation functions P_2. According to conformal invariance, this factorization is exact on the infinite plane, such that the ratio R(z_1, z_2, z_3) = P_3(z_1, z_2, z_3) [P_2(z_1, z_2) P_2(z_1, z_3) P_2(z_2, z_3)]^{1/2} is not only universal but also a constant, independent of the z_i, and in fact an operator product expansion (OPE) coefficient. Delfino and Viti analytically calculate its value (1.022013...) for percolation, in agreement with the numerical value 1.022 found previously in a study of R on the conformally equivalent cylinder. In this paper we confirm the factorization on the plane numerically using periodic lattices (tori) of very large size, which locally approximate a plane. We also investigate the general behavior of R on the torus, and find a minimum value of R approx. 1.0132 when the three points are maximally separated. In addition, we present a simplified expression for R on the plane as a function of the SLE parameter kappa.Comment: Small corrections (final version). In press, J. Phys.

    The Flavor Structure of the Three-Site Higgsless Model

    Get PDF
    We study the flavor structure of the three-site Higgsless model and evaluate the constraints on the model arising from flavor physics. We find that current data constrain the model to exhibit only minimal flavor violation at tree level. Moreover, at the one-loop level, by studying the leading chiral logarithmic corrections to chirality-preserving Delta F = 1 and Delta F = 2 processes from new physics in the model, we show that the combination of minimal flavor violation and ideal delocalization ensures that these flavor-changing effects are sufficiently small that the model remains phenomenologically viable.Comment: 23 pages, 22 pdf figures include

    Low-Energy Effective Theory, Unitarity, and Non-Decoupling Behavior in a Model with Heavy Higgs-Triplet Fields

    Get PDF
    We discuss the properties of a model incorporating both a scalar electroweak Higgs doublet and an electroweak Higgs triplet. We construct the low-energy effective theory for the light Higgs-doublet in the limit of small (but nonzero) deviations in the rho parameter from one, a limit in which the triplet states become heavy. For small deviations in the rho parameter from one, perturbative unitarity of WW scattering breaks down at a scale inversely proportional to the renormalized vacuum expectation value of the triplet field (or, equivalently, inversely proportional to the square-root of the deviation of the rho parameter from one). This result imposes an upper limit on the mass-scale of the heavy triplet bosons in a perturbative theory; we show that this upper bound is consistent with dimensional analysis in the low-energy effective theory. Recent articles have shown that the triplet bosons do not decouple, in the sense that deviations in the rho parameter from one do not necessarily vanish at one-loop in the limit of large triplet mass. We clarify that, despite the non-decoupling behavior of the Higgs-triplet, this model does not violate the decoupling theorem since it incorporates a large dimensionful coupling. Nonetheless, we show that if the triplet-Higgs boson masses are of order the GUT scale, perturbative consistency of the theory requires the (properly renormalized) Higgs-triplet vacuum expectation value to be so small as to be irrelevant for electroweak phenomenology.Comment: Revtex, 11 pages, 7 eps figures included; references updated and three footnotes adde

    Custodial Isospin Violation in the Lee-Wick Standard Model

    Full text link
    We analyze the tension between naturalness and isospin violation in the Lee-Wick Standard Model (LW SM), by computing tree-level and fermionic one-loop contributions to the post-LEP electroweak parameters and the Zbb coupling. The model is most natural when the LW partners of the gauge bosons and fermions are light, but small partner masses can lead to large isospin violation. The post-LEP parameters yield a simple picture in the LW SM: the gauge sector contributes to Y and W only, with leading contributions arising at tree-level, while the fermion sector contributes to S-hat and T-hat only, with leading corrections arising at one loop. Hence, W and Y constrain the masses of the LW gauge bosons to satisfy M1, M2 > 2.4 TeV at 95% CL. Likewise, experimental limits on T-hat reveal that the masses of the LW fermions must satisfy Mq, Mt > 1.6 TeV at 95% CL if the Higgs mass is light and tend to exclude the LW SM for any LW fermion masses if the Higgs mass is heavy. Contributions from the top-quark sector to the Zbb coupling can be even more stringent, placing a lower bound of 4 TeV on the LW fermion masses at 95% CL.Comment: 16 pages, 8 embedded eps figure

    Probing Color Octet Couplings at the Large Hadron Collider

    Full text link
    Color-octet resonances arise in many well motivated theories beyond the standard model. As colored objects they are produced copiously at the LHC and can be discovered in early searches for new physics in dijet final states. Once they are discovered it will be important to measure the couplings of the new resonances to determine the underlying theoretical structure. We propose a new channel, associated production of W,ZW,Z gauge bosons and color-octet resonances, to help determine the chiral structure of the couplings. We present our analysis for a range of color-octet masses (2.5 to 4.5 TeV), couplings and decay widths for the LHC with center of mass energy of 14 TeV and 10 fb−1{\rm fb}^{-1} or 100 fb−1{\rm fb}^{-1} of integrated luminosity. We find that the LHC can probe a large region of the parameter space up to very small couplings.Comment: 19 pages, 9 figures, 3 table

    Single top or bottom production associated with a scalar in \gamma p collision as a probe of topcolor-assisted technicolor

    Full text link
    In the framework of the topcolor-assisted technicolor (TC2) models, we study the productions of a single top or bottom quark associated with a scalar in \gamma-p collision, which proceed via the subprocesses c\gamma -> t\pi_t^0, c\gamma -> t h_t^0 and c\gamma -> b\pi^+_t mediated by the anomalous top or bottom coupling tc\pi_t^0, tch_t^0 and bc\pi_t^+. These productions, while extremely suppressed in the Standard Model, are found to be significantly enhanced in the large part of the TC2 parameter space, especially the production via c\gamma -> b\pi^+ can have a cross section of 100 fb, which may be accessible and allow for a test of the TC2 models.Comment: 13 pages, 4 figures, comments and references adde

    Hearing Characteristics and Doppler Shift Compensation in South Indian CF-FM Bats

    Get PDF
    1. Echolocation pulses, Doppler shift compensation behaviour under laboratory conditions and frequency response characteristics of hearing were recorded inRhinolophus rouxi, Hipposideros speoris andHipposideros bicolor. 2. The frequencies of the constant frequency portions of the CF-FM pulses lie at about 82.8 kHz forR. rouxi from Mahabaleshwar, at 85.2 kHz forR. rouxi from Mysore. Hipposiderid bats have considerably higher frequencies at 135 kHz inH. speoris and 154.5 kHz inH. bicolor. The mean sound durations were 50 ms, 6.4 ms and 4.7 ms, respectively. 3. R. rouxi compensates for Doppler shifts in a range up to typically 4 kHz of positive Doppler shifts (Fig. 2). The Doppler shift compensation behaviour is almost identical to that ofR. ferrumequinum. 4. H. speoris andH. bicolor do not compensate for Doppler shifts under laboratory conditions. Doppler shifts in the echoes induce emission frequency changes which are not correlated to the presented Doppler shifts (Fig. 3). 5. The frequency response characteristics of hearing ofR. rouxi show characteristic sensitivity changes near the bat's reference frequency as also found inR. ferrumequinum. The threshold differences between the low threshold at the reference frequency and a few hundred Hz below are 40 to 50 dB in awake bats (Fig. 5). 6. Frequency sensitivity changes near the emitted CF-frequency of the bats are less pronounced inH. speoris or almost absent inH. bicolor
    • …
    corecore