123 research outputs found

    Dissociation of O2 molecules on strained Pb(111) surfaces

    Full text link
    By performing first-principles molecular dynamics calculations, we systematically simulate the adsorption behavior of oxygen molecules on the clean and strained Pb(111) surfaces. The obtained molecular adsorption precursor state, and the activated dissociation process for oxygen molecules on the clean Pb surface are in good agreements with our previous static calculations, and perfectly explains previous experimental observations [Proc. Natl. Acad. Sci. U.S.A. 104, 9204 (2007)]. In addition, we also study the influences of surface strain on the dissociation behaviors of O2 molecules. It is found that on the compressed Pb(111) surfaces with a strain value of larger than 0.02, O2 molecules will not dissociate at all. And on the stretched Pb(111) surfaces, O2 molecules become easier to approach, and the adsorption energy of the dissociated oxygen atoms is larger than that on the clean Pb surface

    Amplification of a Zygosaccharomyces bailii DNA Segment in Wine Yeast Genomes by Extrachromosomal Circular DNA Formation

    Get PDF
    We recently described the presence of large chromosomal segments resulting from independent horizontal gene transfer (HGT) events in the genome of Saccharomyces cerevisiae strains, mostly of wine origin. We report here evidence for the amplification of one of these segments, a 17 kb DNA segment from Zygosaccharomyces bailii, in the genome of S. cerevisiae strains. The copy number, organization and location of this region differ considerably between strains, indicating that the insertions are independent and that they are post-HGT events. We identified eight different forms in 28 S. cerevisiae strains, mostly of wine origin, with up to four different copies in a single strain. The organization of these forms and the identification of an autonomously replicating sequence functional in S. cerevisiae, strongly suggest that an extrachromosomal circular DNA (eccDNA) molecule serves as an intermediate in the amplification of the Z. bailii region in yeast genomes. We found little or no sequence similarity at the breakpoint regions, suggesting that the insertions may be mediated by nonhomologous recombination. The diversity between these regions in S. cerevisiae represents roughly one third the divergence among the genomes of wine strains, which confirms the recent origin of this event, posterior to the start of wine strain expansion. This is the first report of a circle-based mechanism for the expansion of a DNA segment, mediated by nonhomologous recombination, in natural yeast populations

    Segmental Duplications Arise from Pol32-Dependent Repair of Broken Forks through Two Alternative Replication-Based Mechanisms

    Get PDF
    The propensity of segmental duplications (SDs) to promote genomic instability is of increasing interest since their involvement in numerous human genomic diseases and cancers was revealed. However, the mechanism(s) responsible for their appearance remain mostly speculative. Here, we show that in budding yeast, replication accidents, which are most likely transformed into broken forks, play a causal role in the formation of SDs. The Pol32 subunit of the major replicative polymerase Polδ is required for all SD formation, demonstrating that SDs result from untimely DNA synthesis rather than from unequal crossing-over. Although Pol32 is known to be required for classical (Rad52-dependant) break-induced replication, only half of the SDs can be attributed to this mechanism. The remaining SDs are generated through a Rad52-independent mechanism of template switching between microsatellites or microhomologous sequences. This new mechanism, named microhomology/microsatellite-induced replication (MMIR), differs from all known DNA double-strand break repair pathways, as MMIR-mediated duplications still occur in the combined absence of homologous recombination, microhomology-mediated, and nonhomologous end joining machineries. The interplay between these two replication-based pathways explains important features of higher eukaryotic genomes, such as the strong, but not strict, association between SDs and transposable elements, as well as the frequent formation of oncogenic fusion genes generating protein innovations at SD junctions

    FACT Prevents the Accumulation of Free Histones Evicted from Transcribed Chromatin and a Subsequent Cell Cycle Delay in G1

    Get PDF
    The FACT complex participates in chromatin assembly and disassembly during transcription elongation. The yeast mutants affected in the SPT16 gene, which encodes one of the FACT subunits, alter the expression of G1 cyclins and exhibit defects in the G1/S transition. Here we show that the dysfunction of chromatin reassembly factors, like FACT or Spt6, down-regulates the expression of the gene encoding the cyclin that modulates the G1 length (CLN3) in START by specifically triggering the repression of its promoter. The G1 delay undergone by spt16 mutants is not mediated by the DNA–damage checkpoint, although the mutation of RAD53, which is otherwise involved in histone degradation, enhances the cell-cycle defects of spt16-197. We reveal how FACT dysfunction triggers an accumulation of free histones evicted from transcribed chromatin. This accumulation is enhanced in a rad53 background and leads to a delay in G1. Consistently, we show that the overexpression of histones in wild-type cells down-regulates CLN3 in START and causes a delay in G1. Our work shows that chromatin reassembly factors are essential players in controlling the free histones potentially released from transcribed chromatin and describes a new cell cycle phenomenon that allows cells to respond to excess histones before starting DNA replication

    Dietary sodium intake and overweight and obesity in children and adults: a protocol for a systematic review and meta-analysis.

    Get PDF
    BACKGROUND: Overweight and obesity in children and adults is a major public health concern. Emerging evidence suggests dietary sodium intake may be associated with obesity. This systematic review and meta-analysis will aim to (i) assess the relation between dietary sodium intake and measures of adiposity in children and adults and (ii) examine the relation between sodium intake and sugar-sweetened beverage (SSB) consumption, which is a known risk factor for obesity. METHODS/DESIGN: An electronic search will be conducted using Medline Complete, CINAHL, Scopus, Embase and Cochrane central register of controlled trials (CENTRAL). The search strategy will identify published peer-reviewed articles that report on dietary sodium and either a marker of adiposity or SSB consumption. Only human studies (ages >1 year) in English will be included, and no limits will be placed on publication date. No restrictions will be placed on the method of sodium intake assessment. Cross-sectional, prospective studies, and randomised controlled trials with a duration of ≥ 3 months will be included. Studies with participants with renal disease, cancer, type 1 diabetes or heart failure or who are pregnant will be excluded. To assess the quality of studies, the Cochrane's Collaboration tool for assessing risk of bias in randomised trials will be used for randomised controlled trials (RCTs), and the modified Newcastle-Ottawa Scale will be used for cross-sectional and prospective studies. Meta-analysis will be used to assess the relation of sodium intake with two primary outcomes: (i) BMI and body weight in adults and BMI z-score in children and (ii) weight category (i.e. healthy weight vs. overweight/obese). For any outcomes in which meta-analysis is not possible, we will present data as a systematic review. Findings will be grouped and reported separately for children and adolescents (ages 1-17 years) and adults (ages >18 years). DISCUSSION: This review and meta-analysis will provide insight into the relation between dietary sodium intake and overweight and obesity. This information can be used to inform public health policies which target population sodium consumption. SYSTEMATIC REVIEW REGISTRATION: Prospero CRD42015016440.CG is supported by a National Heart Foundation of Australia Postdoctoral Fellowship (Award ID: 100155)

    L'art dentaire magico-religieux de l'antiquité à nos jours

    No full text
    NICE-Antenne de St Jean d'Angely (060882105) / SudocNICE-BU Médecine Odontologie (060882102) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF
    corecore