1,760 research outputs found

    Crossmodal content binding in information-processing architectures

    Get PDF
    Operating in a physical context, an intelligent robot faces two fundamental problems. First, it needs to combine information from its different sensors to form a representation of the environment that is more complete than any of its sensors on its own could provide. Second, it needs to combine high-level representations (such as those for planning and dialogue) with its sensory information, to ensure that the interpretations of these symbolic representations are grounded in the situated context. Previous approaches to this problem have used techniques such as (low-level) information fusion, ontological reasoning, and (high-level) concept learning. This paper presents a framework in which these, and other approaches, can be combined to form a shared representation of the current state of the robot in relation to its environment and other agents. Preliminary results from an implemented system are presented to illustrate how the framework supports behaviours commonly required of an intelligent robot

    A dynamical, confining model and hot quark stars

    Get PDF
    We explore the consequences of an equation of state (EOS) obtained in a confining Dyson-Schwinger equation model of QCD for the structure and stability of nonstrange quark stars at finite-T, and compare the results with those obtained using a bag-model EOS. Both models support a temperature profile that varies over the star's volume and the consequences of this are model independent. However, in our model the analogue of the bag pressure is (T,mu)-dependent, which is not the case in the bag model. This is a significant qualitative difference and comparing the results effects a primary goal of elucidating the sensitivity of quark star properties to the form of the EOS.Comment: 13 pages, 5 figures, epsfig.sty, elsart.sty. Shortened version to appear in Phys. Lett. B, qualitatively unmodifie

    Mean field exponents and small quark masses

    Full text link
    We demonstrate that the restoration of chiral symmetry at finite-T in a class of confining Dyson-Schwinger equation (DSE) models of QCD is a mean field transition, and that an accurate determination of the critical exponents using the chiral and thermal susceptibilities requires very small values of the current-quark mass: log_{10}(m/m_u) < -5. Other classes of DSE models characterised by qualitatively different interactions also exhibit a mean field transition. Incipient in this observation is the suggestion that mean field exponents are a result of the gap equation's fermion substructure and not of the interaction.Comment: 13 pages, 3 figures, REVTEX, epsfi

    On Renormalized Strong-Coupling Quenched QED in Four Dimensions

    Get PDF
    We study renormalized quenched strong-coupling QED in four dimensions in arbitrary covariant gauge. Above the critical coupling leading to dynamical chiral symmetry breaking, we show that there is no finite chiral limit. This behaviour is found to be independent of the detailed choice of photon-fermion proper vertex in the Dyson-Schwinger equation formalism, provided that the vertex is consistent with the Ward-Takahashi identity and multiplicative renormalizability. We show that the finite solutions previously reported lie in an unphysical regime of the theory with multiple solutions and ultraviolet oscillations in the mass functions. This study supports the assertion that in four dimensions strong coupling QED does not have a continuum limit in the conventional sense.Comment: REVTEX 3.0, 15 pages,including 4 eps files comprising 3 figures. Submitted to Phys. Rev.

    Chiral symmetry breaking in dimensionally regularized nonperturbative quenched QED

    Get PDF
    In this paper we study dynamical chiral symmetry breaking in dimensionally regularized quenched QED within the context of Dyson-Schwinger equations. In D < 4 dimensions the theory has solutions which exhibit chiral symmetry breaking for all values of the coupling. To begin with, we study this phenomenon both numerically and, with some approximations, analytically within the rainbow approximation in the Landau gauge. In particular, we discuss how to extract the critical coupling alpha_c = pi/3 relevant in four dimensions from the D dimensional theory. We further present analytic results for the chirally symmetric solution obtained with the Curtis-Pennington vertex as well as numerical results for solutions exhibiting chiral symmetry breaking. For these we demonstrate that, using dimensional regularization, the extraction of the critical coupling relevant for this vertex is feasible. Initial results for this critical coupling are in agreement with cut-off based work within the currently achievable numerical precision.Comment: 24 pages, including 5 figures; submitted to Phys. Rev.

    Gauge invariance and finite width effects in radiative two-pion tau lepton decay

    Full text link
    The contribution of the rho^{\pm} vector meson to the tau -> pi pi nu gamma decay is considered as a potential source for the determination of the magnetic dipole moment of this light vector meson. In order to keep gauge-invariance of the whole decay amplitude, a procedure similar to the fermion loop-scheme for charged gauge bosons is implemented to incorporate the finite width effects of the rho^{\pm} vector meson. The absorptive pieces of the one-loop corrections to the propagators and electromagnetic vertices of the rho^{\pm} meson and W^{\pm} gauge boson have identical forms in the limit of massless particles in the loops, suggesting this to be a universal feature of spin-one unstable particles. Model-dependent contributions to the tau -> pi pi nu gamma decay are suppressed by fixing the two-pion invariant mass distribution at the rho meson mass value. The resulting photon energy and angular distribution is relatively sensitive to the effects of the rho magnetic dipole moment.Comment: 22 pages, 4 postscript figures, references and comments on relevance of perturbative treatment of rho electromagnetic vertex are added, accepted for pub. in Phys. Rev.

    Vector-meson magnetic dipole moment effects in radiative tau decays

    Full text link
    We study the possibility that the magnetic dipole moment of light charged vector mesons could be measured from their effects in \tau^- --> V^-\nu_{\tau}\gamma decays. We conclude that the energy spectrum and angular distribution of photons emitted at small angles with respect to vector mesons is sensitive the effects of the magnetic dipole moment. Model-dependent contributions and photon radiation off other electromagnetic multipoles are small in this region. We also compute the effects of the magnetic dipole moment on the integrated rates and photon energy spectrum of these Ď„\tau lepton decays.Comment: Latex, 12 pages, 4 figures, submitted to PR

    The π\pi, K+K^+, and K0K^0 electromagnetic form factors

    Full text link
    The rainbow truncation of the quark Dyson-Schwinger equation is combined with the ladder Bethe-Salpeter equation for the meson amplitudes and the dressed quark-photon vertex in a self-consistent Poincar\'e-invariant study of the pion and kaon electromagnetic form factors in impulse approximation. We demonstrate explicitly that the current is conserved in this approach and that the obtained results are independent of the momentum partitioning in the Bethe-Salpeter amplitudes. With model gluon parameters previously fixed by the condensate, the pion mass and decay constant, and the kaon mass, the charge radii and spacelike form factors are found to be in good agreement with the experimental data.Comment: 8 pages, 6 figures, Revte

    A general scaling relation for the critical current density in Nb3Sn

    Get PDF
    We review the scaling relations for the critical current density (Jc) in Nb3Sn wires and include recent findings on the variation of the upper critical field (Hc2) with temperature (T) and A15 composition. We highlight deficiencies in the Summers/Ekin relations, which are not able to account for the correct Jc(T) dependence. Available Jc(H) results indicate that the magnetic field dependence for all wires can be described with Kramer's flux shear model, if non-linearities in Kramer plots are attributed to A15 inhomogeneities. The strain (eps) dependence is introduced through a temperature and strain dependent Hc2*(T,eps) and Ginzburg- Landau parameter kappa1(T,eps) and a strain dependent critical temperature Tc(eps). This is more consistent than the usual Ekin unification, which uses two separate and different dependencies on Hc2*(T) and Hc2*(eps). Using a correct temperature dependence and accounting for the A15 inhomogeneities leads to a remarkable simple relation for Jc(H,T,eps). Finally, a new relation for s(eps) is proposed, based on the first, second and third strain invariants.Comment: Accepted Topical Review for Superconductor, Science and Technolog
    • …
    corecore