1,050 research outputs found
The impact of the Arab Spring on democracy and development in the MENA region
© 2019 John Wiley & Sons Ltd. In evaluating the consequences of the Arab Spring 8 years later, this paper not only focuses on the short-term consequences of the uprisings that swept through a number of countries in the Middle East and North African region but also analyzes the long-term prospects for democratization and development in the MENA region. The impact of the Arab Spring, despite its promises and the expectations of the rest of the world, has been dismal. While only Tunisia made a successful transition to a democratic polity with a constitution guaranteeing the basic rights of the people, the rest of the Arab Spring countries remain in the grip of the authoritarian rule, and countries such as Syria, Libya, and Yemen have been degenerated into bloody civil wars with dwindling hope of peace and freedom. On economic front, the growth has been tardy, showing little difference with countries that were unaffected by the Arab Spring. Yet, the paper concludes, echoing historian Eric Hobsbawm\u27s view, that revolutionary outcomes need not be judged as failure too quickly as they are likely to be partial success in the long term. The impact may be observed in the area of social opening, newer class alliances, and the emergence of a less rapacious, reformed, hybrid authoritarianism
Real-Time PCR Quantification of Metallothionein Gene Expression in Sprague–Dawley Rats Chronically Exposed to Cd
Toxicologic impact of Cd leads to multiple human pathologic conditions,
and its effect on humans and animals has been extensively studied.
Physiologic function of metallothionein (MT1) is not completely understood,
but it is mainly associated with detoxification of Cd and Hg.
Elevated synthesis of MT1 exposed to metals has been observed but
data on quantitation in various tissues is limited. We measured MT1
levels in peripheral blood and tissue samples of rats exposed to CdCl2.
The objective is to investigate the effect of chronic exposure of Cd on
peripheral blood and tissue-specific expression of MT1. This will provide
information of MT1 gene transcription regulation and its impact
on the heavy metal detoxification process. Rats raised in our animal
facility were assigned to 8 experimental groups. Daily dose of 15 mg/
kg body weight CdCl2 in drinking water was administered for 8 wk. The
control group received tap water free of Cd. Peripheral blood samples
collected at 4 occasions (week 2, 4, 6, and 8) in EDTA tubes by retroorbital
bleeding procedure. Liver and kidney tissue samples were collected and
weighed. Total RNA/cDNA was prepared and quantified according to
manufacturer’s protocol. Premade MT1 gene expression assay was used
while β-actin gene was the endogeneous control. Results from week 2
and 4 showed the trend of upregulation of MT1 gene (fold increase)
while the sample from all the other occasions showed downregulated
response of MT1. Week 4 sample showed the fold increase of 1.11 times
compared to week 2 increase of 1.04. Though the recorded 1.1-fold difference
in the gene expression is not high, it gives an indication that
there was an induction of MT1 gene. The downregulated pattern of MT1
gene might be due to the overaccumulation of repressor apothionein
protein which stops MT1 transcription. When the metal binds to the
promoter region of the MT1 gene-repressor protein, it becomes inactive
and increases the MT1 transcription, but at the same time accumulation
of repressor protein downregulates MT1 gene. Our observations suggest
that chronic Cd exposure elicits an elevated MT1 gene expression which
in turn leads to detoxification. More elaborative study is warranted for
further understanding of MT1 gene expression
Self-assembly routes towards creating superconducting and magnetic arrays
Using self-assembly from colloidal suspensions of polystyrene latex spheres we prepared well-ordered templates. By electrochemical deposition of magnetic and superconducting metals in the pores of such templates highly ordered magnetic and superconducting anti-dot nano-structures with 3D architectures were created. Further developments of this template preparation method allow us to obtain dot arrays and even more complicated structures. In magnetic anti-dot arrays we observe a large increase in coercive field produced by nanoscale (50–1000nm) holes. We also find the coercive field to demonstrate an oscillatory dependence on film thickness. In magnetic dot arrays we have explored the genesis of 3D magnetic vortices and determined the critical dot size. Superconducting Pb anti-dot arrays show pronounced Little-Parks oscillations in Tc and matching effects in magnetization and magnetic susceptibility. The spherical shape of the holes results in significantly reduced pinning strength as compared to standard lithographic samples. Our results demonstrate that self-assembly template methods are emerging as a viable, low cost route to prepare sub-micron structures
Shape-induced anisotropy in antidot arrays from self-assembled templates
Using self-assembly of polystyrene spheres, well-ordered templates have been prepared on glass and silicon substrates. Strong guiding of self-assembly is obtained on photolithographically structured silicon substrates. Magnetic antidot arrays with three-dimensional architecture have been prepared by electrodeposition in the pores of these templates. The shape anisotropy demonstrates a crucial impact on magnetization reversal processes
Efficient Analysis of High Dimensional Data in Tensor Formats
In this article we introduce new methods for the analysis of high dimensional data in tensor formats, where the underling data come from the stochastic elliptic boundary value problem. After discretisation of the deterministic operator as well as the presented random fields via KLE and PCE, the obtained high dimensional operator can be approximated via sums of elementary tensors. This tensors representation can be effectively used for computing different values of interest, such as maximum norm, level sets and cumulative distribution function. The basic concept of the data analysis in high dimensions is discussed on tensors represented in the canonical format, however the approach can be easily used in other tensor formats. As an intermediate step we describe efficient iterative algorithms for computing the characteristic and sign functions as well as pointwise inverse in the canonical tensor format. Since during majority of algebraic operations as well as during iteration steps the representation rank grows up, we use lower-rank approximation and inexact recursive iteration schemes
Exhaustive and Efficient Constraint Propagation: A Semi-Supervised Learning Perspective and Its Applications
This paper presents a novel pairwise constraint propagation approach by
decomposing the challenging constraint propagation problem into a set of
independent semi-supervised learning subproblems which can be solved in
quadratic time using label propagation based on k-nearest neighbor graphs.
Considering that this time cost is proportional to the number of all possible
pairwise constraints, our approach actually provides an efficient solution for
exhaustively propagating pairwise constraints throughout the entire dataset.
The resulting exhaustive set of propagated pairwise constraints are further
used to adjust the similarity matrix for constrained spectral clustering. Other
than the traditional constraint propagation on single-source data, our approach
is also extended to more challenging constraint propagation on multi-source
data where each pairwise constraint is defined over a pair of data points from
different sources. This multi-source constraint propagation has an important
application to cross-modal multimedia retrieval. Extensive results have shown
the superior performance of our approach.Comment: The short version of this paper appears as oral paper in ECCV 201
Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death
The purinergic signalling system, which uses purines and pyrimidines as chemical transmitters, and purinoceptors as effectors, is deeply rooted in evolution and development and is a pivotal factor in cell communication. The ATP and its derivatives function as a 'danger signal' in the most primitive forms of life. Purinoceptors are extraordinarily widely distributed in all cell types and tissues and they are involved in the regulation of an even more extraordinary number of biological processes. In addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion, there is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body. In this article, we focus on the latter in the immune/defence system, in stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption, as well as in cancer. Cell Death and Disease (2010) 1, e9; doi:10.1038/cddis.2009.11; published online 14 January 201
- …