10,783 research outputs found

    Breaking Kelvin: Circulation conservation and vortex breakup in MHD at low Magnetic Prandtl Number

    Full text link
    In this paper we examine the role of weak magnetic fields in breaking Kelvin's circulation theorem and in vortex breakup in two-dimensional magnetohydrodynamics for the physically important case of a low magnetic Prandtl number (low PmPm) fluid. We consider three canonical inviscid solutions for the purely hydrodynamical problem, namely a Gaussian vortex, a circular vortex patch and an elliptical vortex patch. We examine how magnetic fields lead to an initial loss of circulation Γ\Gamma and attempt to derive scaling laws for the loss of circulation as a function of field strength and diffusion as measured by two non-dimensional parameters. We show that for all cases the loss of circulation depends on the integrated effects of the Lorentz force, with the patch cases leading to significantly greater circulation loss. For the case of the elliptical vortex the loss of circulation depends on the total area swept out by the rotating vortex and so this leads to more efficient circulation loss than for a circular vortex.Comment: 21 pages, 12 figure

    Influence of zonal flows on unstable drift modes in ETG turbulence

    Full text link
    The linear instability of the electron temperature gradient (ETG) driven modes in the presence of zonal flows is investigated. Random and deterministic coscos - like profiles of the zonal flow are considered. It is shown that the presence of shearing by zonal flows can stabilize the linear instability of ETG drift modes

    Nonlinear shock acceleration beyond the Bohm limit

    Full text link
    We suggest a physical mechanism whereby the acceleration time of cosmic rays by shock waves can be significantly reduced. This creates the possibility of particle acceleration beyond the knee energy at ~10^15eV. The acceleration results from a nonlinear modification of the flow ahead of the shock supported by particles already accelerated to the knee momentum at p ~ p_*. The particles gain energy by bouncing off converging magnetic irregularities frozen into the flow in the shock precursor and not so much by re-crossing the shock itself. The acceleration rate is thus determined by the gradient of the flow velocity and turns out to be formally independent of the particle mean free path (m.f.p.). The velocity gradient is, in turn, set by the knee-particles at p ~ p_* as having the dominant contribution to the CR pressure. Since it is independent of the m.f.p., the acceleration rate of particles above the knee does not decrease with energy, unlike in the linear acceleration regime. The reason for the knee formation at p ~ p_* is that particles with p>p∗p > p_* are effectively confined to the shock precursor only while they are within limited domains in the momentum space, while other particles fall into ``loss-islands'', similar to the ``loss-cone'' of magnetic traps. This structure of the momentum space is due to the character of the scattering magnetic irregularities. They are formed by a train of shock waves that naturally emerge from unstably growing and steepening magnetosonic waves or as a result of acoustic instability of the CR precursor. These losses steepen the spectrum above the knee, which also prevents the shock width from increasing with the maximum particle energy.Comment: aastex, 13 eps figure

    Consumer credit information systems: A critical review of the literature. Too little attention paid by lawyers?

    Get PDF
    This paper reviews the existing literature on consumer credit reporting, the most extensively used instrument to overcome information asymmetry and adverse selection problems in credit markets. Despite the copious literature in economics and some research in regulatory policy, the legal community has paid almost no attention to the legal framework of consumer credit information systems, especially within the context of the European Union. Studies on the topic, however, seem particularly relevant in view of the establishment of a single market for consumer credit. This article ultimately calls for further legal research to address consumer protection concerns and inform future legislation

    A magnetically collimated jet from an evolved star

    Full text link
    Planetary nebulae often have asymmetric shapes, which could arise due to collimated jets from evolved stars before evolution to the planetary nebula phase. The source of jet collimation in these stars is unknown. Magnetic fields are thought to collimate outflows that are observed in many other astrophysical sources, such as active galactic nuclei and proto-stars, although hitherto there are no direct observations of both the magnetic field direction and strength in any collimated jet. Theoretical models have shown that magnetic fields could also be the dominant source of collimation of jet in evolved stars. Here we report measurements of the polarization of water vapour masers that trace the precessing jet emanating from the asymptotic giant branch star W43A at 2.6 kpc from the Sun, which is undergoing rapid evolution into a planetary nebula. The masers occur in two clusters at opposing tips of the jets, ~1,000 AU from the star. We find direct evidence that the magnetic field is collimating the jet.Comment: Published in Nature 440 (March 2nd 2006). High-res figures can be found at http://www.jb.man.ac.uk/~wouter/papers/w43a/w43a.htm

    Method for Measuring the Dielectric Constant of Ferroelectric Ceramics at S-Band Frequencies

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66190/1/j.1151-2916.1960.tb13658.x.pd
    • 

    corecore