5,789 research outputs found

    Field-induced gapless electron pocket in the superconducting vortex phase of YNi2B2C as probed by magnetoacoustic quantum oscillations

    Full text link
    By use of ultrasound studies we resolved magneto-acoustic quantum oscillation deep into the mixed state of the multiband nonmagnetic superconductor YNi2B2C. Below the upper critical field, only a very weak additional damping appears that can be well explained by the field inhomogeneity caused by the flux-line lattice in the mixed state. This is clear evidence for no or a vanishingly small gap for one of the bands, namely, the spheroidal alpha band. This contrasts de Haas--van Alphen data obtained by use of torque magnetometry for the same sample, with a rapidly vanishing oscillation signal in the mixed state. This points to a strongly distorted flux-line lattice in the latter case that, in general, can hamper a reliable extraction of gap parameters by use of such techniques.Comment: 6 pages, 6 figure

    Field and Temperature Dependence of the Superfluid Density in LaO_{1-x}F_xFeAs Superconductors: A Muon Spin Relaxation Study

    Full text link
    We present zero field and transverse field \muSR experiments on the recently discovered electron doped Fe-based superconductor LaO_{1-x}F_xFeAs. The zero field experiments on underdoped (x=0.075) and optimally doped (x=0.1) samples rule out any static magnetic order above 1.6 K in these superconducting samples. From transverse field experiments in the vortex phase we deduce the temperature and field dependence of the superfluid density. Whereas the temperature dependence is consistent with a weak coupling BCS s-wave or a dirty d-wave gap function scenario, the field dependence strongly evidences unconventional superconductivity. We obtain the in-plane penetration depth of \lambda_{ab} (0) = 254(2)nm for LaO_{0.9}F_{0.1}FeAs and \lambda_{ab} (0) = 364(8)nm for LaO_{0.925}F_{0.075}FeAs. Further evidence for unconventional superconductivity is provided by the ratio of T_c versus the superfluid density, which is close to the Uemura line of hole doped high-T_c cuprates.Comment: 5 pages, 5 figure

    Operational methods in the study of Sobolev-Jacobi polynomials

    Get PDF
    Inspired by ideas from umbral calculus and based on the two types of integrals occurring in the defining equations for the gamma and the reciprocal gamma functions, respectively, we develop a multi-variate version of umbral calculus and of the so-called umbral image technique. Besides providing a class of new formulae for generalized hypergeometric functions and an implementation of series manipulations for computing lacunary generating functions, our main application of these techniques is the study of Sobolev-Jacobi polynomials. Motivated by applications to theoretical chemistry, we moreover present a deep link between generalized normal-ordering techniques introduced by Gurappa and Panigrahi, two-variable Hermite polynomials and our integral-based series transforms. Notably, we thus calculate all K-tuple L-shifted lacunary exponential generating functions for a certain family of Sobolev-Jacobi (SJ) polynomials explicitly

    Ce-L3-XAS study of the temperature dependence of the 4f occupancy in the Kondo system Ce2Rh3Al9

    Get PDF
    We have used temperature dependent x-ray absorption at the Ce-L3 edge to investigate the recently discovered Kondo compound Ce2Rh3Al9. The systematic changes of the spectral lineshape with decreasing temperature are analyzed and found to be related to a change in the 4f4f occupation number, n_f, as the system undergoes a transition into a Kondo state. The temperature dependence of nfn_f indicates a characteristic temperature of 150K, which is clearly related with the high temperature anomaly observed in the magnetic susceptibility of the same system. The further anomaly observed in the resistivity of this system at low temperature (ca. 20K) has no effect on n_f and is thus not of Kondo origin.Comment: 7 pages, three figures, submitted to PR

    Evidence for Pauli-limiting behaviour at high fields and enhanced upper critical fields near T_c in several disordered FeAs based Superconductors

    Full text link
    We report resistivity and upper critical field B_c2(T) data for disordered (As deficient) LaO_0.9F_0.1FeAs_1-delta in a wide temperature and high field range up to 60 T. These samples exhibit a slightly enhanced superconducting transition at T_c = 28.5 K and a significantly enlarged slope dB_c2/dT = -5.4 T/K near T_c which contrasts with a flattening of B_c2(T) starting near 23 K above 30 T. The latter evidences Pauli limiting behaviour (PLB) with B_c2(0) approximately 63 T. We compare our results with B_c2(T)-data from the literature for clean and disordered samples. Whereas clean samples show almost no PLB for fields below 60 to 70 T, the hitherto unexplained pronounced flattening of B_c2(T) for applied fields H II ab observed for several disordered closely related systems is interpreted also as a manifestation of PLB. Consequences are discussed in terms of disorder effects within the frames of (un)conventional superconductivity, respectively.Comment: 2 pages, 3 figures, submitted to M2S Tokyo 0

    Suppression of ferromagnetism in CeSi_1.81 under temperature and pressure

    Full text link
    We have studied the pressure dependence of the magnetization of single crystalline CeSi_1.81. At ambient pressure ferromagnetism develops below T_C = 9.5 Below ~ 5 K an additional shoulder in low-field hysteresis loops and a metamagnetic crossover around 4 T suggest the appearance of an additional magnetic modulation to the ferromagnetic state. The suppression of the magnetic order in CeSi_1.81 as function of temperature at ambient pressure and as function of pressure at low temperature are in remarkable qualitative agreement. The continuous suppression of the ordered moment at p ~ 13.1 kbar suggests the existence of a ferromagnetic quantum critical point in this material.Comment: 9 pages, 9 figures, to be published in Physical Review

    Evidence for Fermi surface reconstruction in the static stripe phase of La1.8x_{1.8-x}Eu0.2_{0.2}Srx_xCuO4_{4}, x=1/8x=1/8

    Full text link
    We present a photoemission study of La0.8x_{0.8-x}Eu0.2_{0.2}Srx_xCuO4_{4} with doping level xx=1/8, where the charge carriers are expected to order forming static stripes. Though the local probes in direct space seem to be consistent with this idea, there has been little evidence found for such ordering in quasiparticle dispersions. We show that the Fermi surface topology of the 1/8 compound develops notable deviations from that observed for La2x_{2- x}Srx_xCuO4_{4} in a way consistent with the FS reconstruction expected for the scattering on the antiphase stripe order
    corecore