344 research outputs found

    Kernelization and Parameterized Algorithms for 3-Path Vertex Cover

    Full text link
    A 3-path vertex cover in a graph is a vertex subset CC such that every path of three vertices contains at least one vertex from CC. The parameterized 3-path vertex cover problem asks whether a graph has a 3-path vertex cover of size at most kk. In this paper, we give a kernel of 5k5k vertices and an O(1.7485k)O^*(1.7485^k)-time and polynomial-space algorithm for this problem, both new results improve previous known bounds.Comment: in TAMC 2016, LNCS 9796, 201

    Whole Genome Sequence Data From Captive Baboons Implicate RBFOX1 in Epileptic Seizure Risk

    Get PDF
    In this study, we investigate the genetic determinants that underlie epilepsy in a captive baboon pedigree and evaluate the potential suitability of this non-human primate model for understanding the genetic etiology of human epilepsy. Archived whole-genome sequence data were analyzed using both a candidate gene approach that targeted variants in baboon homologs of 19 genes (n = 20,881 SNPs) previously implicated in genetic generalized epilepsy (GGE) and a more agnostic approach that examined protein-altering mutations genome-wide as assessed by snpEff (n = 36,169). Measured genotype association tests for baboon cases of epileptic seizure were performed using SOLAR, as well as gene set enrichment analyses (GSEA) and protein–protein interaction (PPI) network construction of top association hits genome-wide (p \u3c 0.01; n = 441 genes). The maximum likelihood estimate of heritability for epileptic seizure in the pedigreed baboon sample is 0.76 (SE = 0.77; p = 0.07). Among candidate genes for GGE, a significant association was detected for an intronic SNP in RBFOX1 (p = 5.92 × 10–6; adjusted p = 0.016). For protein-altering variants, no genome-wide significant results were observed for epilepsy status. However, GSEA revealed significant positive enrichment for genes involved in the extracellular matrix structure (ECM; FDR = 0.0072) and collagen formation (FDR = 0.017), which was reflected in a major PPI network cluster. This preliminary study highlights the potential role of RBFOX1 in the epileptic baboon, a protein involved in transcriptomic regulation of multiple epilepsy candidate genes in humans and itself previously implicated in human epilepsy, both focal and generalized. Moreover, protein-damaging variants from across the genome exhibit a pattern of association that links collagen-containing ECM to epilepsy risk. These findings suggest a shared genetic etiology between baboon and human forms of GGE and lay the foundation for follow-up research

    Arbitrary Choice of Basic Variables in Density Functional Theory. II. Illustrative Applications

    Get PDF
    Our recent theory (Ref. 1) enables us to choose arbitrary quantities as the basic variables of the density functional theory. In this paper we apply it to several cases. In the case where the occupation matrix of localized orbitals is chosen as a basic variable, we can obtain the single-particle equation which is equivalent to that of the LDA+U method. The theory also leads to the Hartree-Fock-Kohn-Sham equation by letting the exchange energy be a basic variable. Furthermore, if the quantity associated with the density of states near the Fermi level is chosen as a basic variable, the resulting single-particle equation includes the additional potential which could mainly modify the energy-band structures near the Fermi level.Comment: 27 page

    Novel Associations of Nonstructural Loci with Paraoxonase Activity

    Get PDF
    The high-density-lipoprotein-(HDL-) associated esterase paraoxonase 1 (PON1) is a likely contributor to the antioxidant and antiatherosclerotic capabilities of HDL. Two nonsynonymous mutations in the structural gene, PON1, have been associated with variation in activity levels, but substantial interindividual differences remain unexplained and are greatest for substrates other than the eponymous paraoxon. PON1 activity levels were measured for three substrates—organophosphate paraoxon, arylester phenyl acetate, and lactone dihydrocoumarin—in 767 Mexican American individuals from San Antonio, Texas. Genetic influences on activity levels for each substrate were evaluated by association with approximately one million single nucleotide polymorphism (SNPs) while conditioning on PON1 genotypes. Significant associations were detected at five loci including regions on chromosomes 4 and 17 known to be associated with atherosclerosis and lipoprotein regulation and loci on chromosome 3 that regulate ubiquitous transcription factors. These loci explain 7.8% of variation in PON1 activity with lactone as a substrate, 5.6% with the arylester, and 3.0% with paraoxon. In light of the potential importance of PON1 in preventing cardiovascular disease/events, these novel loci merit further investigation

    Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldSystemic lupus erythematosus (SLE) is a complex systemic autoimmune disease caused by both genetic and environmental factors. Genome scans in families with SLE point to multiple potential chromosomal regions that harbor SLE susceptibility genes, and association studies in different populations have suggested several susceptibility alleles for SLE. Increased production of type I interferon (IFN) and expression of IFN-inducible genes is commonly observed in SLE and may be pivotal in the molecular pathogenesis of the disease. We analyzed 44 single-nucleotide polymorphisms (SNPs) in 13 genes from the type I IFN pathway in 679 Swedish, Finnish, and Icelandic patients with SLE, in 798 unaffected family members, and in 438 unrelated control individuals for joint linkage and association with SLE. In two of the genes--the tyrosine kinase 2 (TYK2) and IFN regulatory factor 5 (IRF5) genes--we identified SNPs that displayed strong signals in joint analysis of linkage and association (unadjusted P<10(-7)) with SLE. TYK2 binds to the type I IFN receptor complex and IRF5 is a regulator of type I IFN gene expression. Thus, our results support a disease mechanism in SLE that involves key components of the type I IFN system
    corecore