466 research outputs found
Towards new background independent representations for Loop Quantum Gravity
Recently, uniqueness theorems were constructed for the representation used in
Loop Quantum Gravity. We explore the existence of alternate representations by
weakening the assumptions of the so called LOST uniqueness theorem. The
weakened assumptions seem physically reasonable and retain the key requirement
of explicit background independence. For simplicity, we restrict attention to
the case of gauge group U(1).Comment: 22 pages, minor change
BET bromodomain protein inhibition is a therapeutic option for medulloblastoma
Medulloblastoma is the most common malignant brain tumor of childhood, and represents a significant clinical challenge in pediatric oncology, since overall survival currently remains under 70%. Patients with tumors overexpressing MYC or harboring a MYC oncogene amplification have an extremely poor prognosis. Pharmacologically inhibiting MYC expression may, thus, have clinical utility given its pathogenetic role in medulloblastoma. Recent studies using the selective small molecule BET inhibitor, JQ1, have identified BET bromodomain proteins, especially BRD4, as epigenetic regulatory factors for MYC and its targets. Targeting MYC expression by BET inhibition resulted in antitumoral effects in various cancers. Our aim here was to evaluate the efficacy of JQ1 against preclinical models for high-risk MYC-driven medulloblastoma. Treatment of medulloblastoma cell lines with JQ1 significantly reduced cell proliferation and preferentially induced apoptosis in cells expressing high levels of MYC. JQ1 treatment of medulloblastoma cell lines downregulated MYC expression and resulted in a transcriptional deregulation of MYC targets, and also significantly altered expression of genes involved in cell cycle progression and p53 signalling. JQ1 treatment prolonged the survival of mice harboring medulloblastoma xenografts and reduced the tumor burden in these mice. Our preclinical data provide evidence to pursue testing BET inhibitors, such as JQ1, as molecular targeted therapeutic options for patients with high-risk medulloblastomas overexpressing MYC or harboring MYC amplifications
Background independent quantizations: the scalar field I
We are concerned with the issue of quantization of a scalar field in a
diffeomorphism invariant manner. We apply the method used in Loop Quantum
Gravity. It relies on the specific choice of scalar field variables referred to
as the polymer variables. The quantization, in our formulation, amounts to
introducing the `quantum' polymer *-star algebra and looking for positive
linear functionals, called states. The assumed in our paper homeomorphism
invariance allows to determine a complete class of the states. Except one, all
of them are new. In this letter we outline the main steps and conclusions, and
present the results: the GNS representations, characterization of those states
which lead to essentially self adjoint momentum operators (unbounded),
identification of the equivalence classes of the representations as well as of
the irreducible ones. The algebra and topology of the problem, the derivation,
all the technical details and more are contained in the paper-part II.Comment: 13 pages, minor corrections were made in the revised versio
Quantum Spin Dynamics VIII. The Master Constraint
Recently the Master Constraint Programme (MCP) for Loop Quantum Gravity (LQG)
was launched which replaces the infinite number of Hamiltonian constraints by a
single Master constraint. The MCP is designed to overcome the complications
associated with the non -- Lie -- algebra structure of the Dirac algebra of
Hamiltonian constraints and was successfully tested in various field theory
models. For the case of 3+1 gravity itself, so far only a positive quadratic
form for the Master Constraint Operator was derived. In this paper we close
this gap and prove that the quadratic form is closable and thus stems from a
unique self -- adjoint Master Constraint Operator. The proof rests on a simple
feature of the general pattern according to which Hamiltonian constraints in
LQG are constructed and thus extends to arbitrary matter coupling and holds for
any metric signature. With this result the existence of a physical Hilbert
space for LQG is established by standard spectral analysis.Comment: 19p, no figure
Spherically Symmetric Quantum Geometry: Hamiltonian Constraint
Variables adapted to the quantum dynamics of spherically symmetric models are
introduced, which further simplify the spherically symmetric volume operator
and allow an explicit computation of all matrix elements of the Euclidean and
Lorentzian Hamiltonian constraints. The construction fits completely into the
general scheme available in loop quantum gravity for the quantization of the
full theory as well as symmetric models. This then presents a further
consistency check of the whole scheme in inhomogeneous situations, lending
further credence to the physical results obtained so far mainly in homogeneous
models. New applications in particular of the spherically symmetric model in
the context of black hole physics are discussed.Comment: 33 page
Properties of the Volume Operator in Loop Quantum Gravity I: Results
We analyze the spectral properties of the volume operator of Ashtekar and
Lewandowski in Loop Quantum Gravity, which is the quantum analogue of the
classical volume expression for regions in three dimensional Riemannian space.
Our analysis considers for the first time generic graph vertices of valence
greater than four. Here we find that the geometry of the underlying vertex
characterizes the spectral properties of the volume operator, in particular the
presence of a `volume gap' (a smallest non-zero eigenvalue in the spectrum) is
found to depend on the vertex embedding. We compute the set of all
non-spatially diffeomorphic non-coplanar vertex embeddings for vertices of
valence 5--7, and argue that these sets can be used to label spatial
diffeomorphism invariant states. We observe how gauge invariance connects
vertex geometry and representation properties of the underlying gauge group in
a natural way. Analytical results on the spectrum on 4-valent vertices are
included, for which the presence of a volume gap is proved. This paper presents
our main results; details are provided by a companion paper arXiv:0706.0382v1.Comment: 36 pages, 7 figures, LaTeX. See also companion paper
arXiv:0706.0382v1. Version as published in CQG in 2008. See arXiv:1003.2348
for important remarks regarding the sigma configurations. Subsequent
computations have revealed some minor errors, which do not change the
qualitative results but modify some of the numbers presented her
Very-high-energy observations of the binaries V 404 Cyg and 4U 0115+634 during giant X-ray outbursts
Transient X-ray binaries produce major outbursts in which the X-ray flux can
increase over the quiescent level by factors as large as . The low-mass
X-ray binary V 404 Cyg and the high-mass system 4U 0115+634 underwent such
major outbursts in June and October 2015, respectively. We present here
observations at energies above hundreds of GeV with the VERITAS observatory
taken during some of the brightest X-ray activity ever observed from these
systems. No gamma-ray emission has been detected by VERITAS in 2.5 hours of
observations of the microquasar V 404 Cyg from 2015, June 20-21. The upper flux
limits derived from these observations on the gamma-ray flux above 200 GeV of F
cm s correspond to a tiny fraction (about
) of the Eddington luminosity of the system, in stark contrast to that
seen in the X-ray band. No gamma rays have been detected during observations of
4U 0115+634 in the period of major X-ray activity in October 2015. The flux
upper limit derived from our observations is F cm
s for gamma rays above 300 GeV, setting an upper limit on the ratio of
gamma-ray to X-ray luminosity of less than 4%.Comment: Accepted for publication in the Astrophysical Journa
Background independent quantizations: the scalar field II
We are concerned with the issue of quantization of a scalar field in a
diffeomorphism invariant manner. We apply the method used in Loop Quantum
Gravity. It relies on the specific choice of scalar field variables referred to
as the polymer variables. The quantization, in our formulation, amounts to
introducing the `quantum' polymer *-star algebra and looking for positive
linear functionals, called states. Assumed in our paper homeomorphism
invariance allows to derive the complete class of the states. They are
determined by the homeomorphism invariant states defined on the CW-complex
*-algebra. The corresponding GNS representations of the polymer *-algebra and
their self-adjoint extensions are derived, the equivalence classes are found
and invariant subspaces characterized. In the preceding letter (the part I) we
outlined those results. Here, we present the technical details.Comment: 51 pages, LaTeX, no figures, revised versio
Discovery of Very High Energy Gamma Rays from 1ES 1440+122
The BL Lacertae object 1ES 1440+122 was observed in the energy range from 85
GeV to 30 TeV by the VERITAS array of imaging atmospheric Cherenkov telescopes.
The observations, taken between 2008 May and 2010 June and totalling 53 hours,
resulted in the discovery of -ray emission from the blazar, which has a
redshift =0.163. 1ES 1440+122 is detected at a statistical significance of
5.5 standard deviations above the background with an integral flux of
(2.8) 10
cm s (1.2\% of the Crab Nebula's flux) above 200 GeV. The
measured spectrum is described well by a power law from 0.2 TeV to 1.3 TeV with
a photon index of 3.1 0.4 0.2.
Quasi-simultaneous multi-wavelength data from the Fermi Large Area Telescope
(0.3--300 GeV) and the Swift X-ray Telescope (0.2--10 keV) are additionally
used to model the properties of the emission region. A synchrotron self-Compton
model produces a good representation of the multi-wavelength data. Adding an
external-Compton or a hadronic component also adequately describes the data.Comment: 8 pages, 4 figures. Accepted for publication in MNRA
- …
