4,494 research outputs found

    Generalized Aharonov-Bohm effect, homotopy classes and Hausdorff dimension

    Full text link
    We suggest as gedanken experiment a generalization of the Aharonov-Bohm experiment, based on an array of solenoids. This experiment allows in principle to measure the decomposition into homotopy classes of the quantum mechanical propagator. This yields information on the geometry of the average path of propagation and allows to determine its Hausdorff dimension.Comment: 14 pages, LaTeX + 3 figures, P

    The basis problem in many-worlds theories

    Get PDF
    It is emphasized that a many-worlds interpretation of quantum theory exists only to the extent that the associated basis problem is solved. The core basis problem is that the robust enduring states specified by environmental decoherence effects are essentially Gaussian wave packets that form continua of non-orthogonal states. Hence they are not a discrete set of orthogonal basis states to which finite probabilities can be assigned by the usual rules. The natural way to get an orthogonal basis without going outside the Schroedinger dynamics is to use the eigenstates of the reduced density matrix, and this idea is the basis of some recent attempts by many-worlds proponents to solve the basis problem. But these eigenstates do not enjoy the locality and quasi-classicality properties of the states defined by environmental decoherence effects, and hence are not satisfactory preferred basis states. The basis problem needs to be addressed and resolved before a many-worlds-type interpretation can be said to exist.Comment: This extended version is to be published in The Canadian Journal of Physic

    Minimal Uncertainty in Momentum: The Effects of IR Gravity on Quantum Mechanics

    Full text link
    The effects of the IR aspects of gravity on quantum mechanics is investigated. At large distances where due to gravity the space-time is curved, there appears nonzero minimal uncertainty Δp0\Delta p_{0} in the momentum of a quantum mechanical particle. We apply the minimal uncertainty momentum to some quantum mechanical interferometry examples and show that the phase shift depends on the area surrounded by the path of the test particle . We also put some limits on the related parameters. This prediction may be tested through future experiments. The assumption of minimal uncertainty in momentum can also explain the anomalous excess of the mass of the Cooper pair in a rotating thin superconductor ring.Comment: 8 pages, revised version accepted by PR

    Ideal Linear Chain Polymers with Fixed Angular Momentum

    Full text link
    The statistical mechanics of a linear non-interacting polymer chain with a large number of monomers is considered with fixed angular momentum. The radius of gyration for a linear polymer is derived exactly by functional integration. This result is then compared to simulations done with a large number of non-interacting rigid links at fixed angular momentum. The simulation agrees with the theory up to finite size corrections. The simulations are also used to investigate the anisotropic nature of a spinning polymer. We find universal scaling of the polymer size along the direction of the angular momentum, as a function of rescaled angular momentum.Comment: 7 pages, 3 figure

    Why a splitting in the final state cannot explain the GSI-Oscillations

    Full text link
    In this paper, I give a pedagogical discussion of the GSI anomaly. Using two different formulations, namely the intuitive Quantum Field Theory language of the second quantized picture as well as the language of amplitudes, I clear up the analogies and differences between the GSI anomaly and other processes (the Double Slit experiment using photons, e+eμ+μe^+ e^- \to \mu^+ \mu^- scattering, and charged pion decay). In both formulations, the conclusion is reached that the decay rate measured at GSI cannot oscillate if only Standard Model physics is involved and the initial hydrogen-like ion is no coherent superposition of more than one state (in case there is no new, yet unknown, mechanism at work). Furthermore, a discussion of the Quantum Beat phenomenon will be given, which is often assumed to be able to cause the observed oscillations. This is, however, not possible for a splitting in the final state only.Comment: 10 pages, 3 figures; matches published version (except for some stylistic ambiguities

    Dispersionless motion in a driven periodic potential

    Full text link
    Recently, dispersionless (coherent) motion of (noninteracting) massive Brownian particles, at intermediate time scales, was reported in a sinusoidal potential with a constant tilt. The coherent motion persists for a finite length of time before the motion becomes diffusive. We show that such coherent motion can be obtained repeatedly by applying an external zero-mean square-wave drive of appropriate period and amplitude, instead of a constant tilt. Thus, the cumulative duration of coherent motion of particles is prolonged. Moreover, by taking an appropriate combination of periods of the external field, one can postpone the beginning of the coherent motion and can even have coherent motion at a lower value of position dispersion than in the constant tilt case.Comment: 4 pages, 4 figure

    Polaron action for multimode dispersive phonon systems

    Full text link
    Path-integral approach to the tight-binding polaron is extended to multiple optical phonon modes of arbitrary dispersion and polarization. The non-linear lattice effects are neglected. Only one electron band is considered. The electron-phonon interaction is of the density-displacement type, but can be of arbitrary spatial range and shape. Feynman's analytical integration of ion trajectories is performed by transforming the electron-ion forces to the basis in which the phonon dynamical matrix is diagonal. The resulting polaron action is derived for the periodic and shifted boundary conditions in imaginary time. The former can be used for calculating polaron thermodynamics while the latter for the polaron mass and spectrum. The developed formalism is the analytical basis for numerical analysis of such models by path-integral Monte Carlo methods.Comment: 9 page

    Anomalous Microfluidic Phonons Induced by the Interplay of Hydrodynamic Screening and Incompressibility

    Full text link
    We investigate the acoustic normal modes ("phonons") of a 1D microfluidic droplet crystal at the crossover between 2D flow and confined 1D plug flow. The unusual phonon spectra of the crystal, which arise from long-range hydrodynamic interactions, change anomalously under confinement. The boundaries induce weakening and screening of the interactions, but when approaching the 1D limit we measure a marked increase in the crystal sound velocity, a sign of interaction strengthening. This non-monotonous behavior of the phonon spectra is explained theoretically by the interplay of screening and plug flow.Comment: http://link.aps.org/doi/10.1103/PhysRevLett.99.124502 http://www.weizmann.ac.il/complex/tlusty/papers/PhysRevLett2007.pd

    Curvature Constraints from the Causal Entropic Principle

    Full text link
    Current cosmological observations indicate a preference for a cosmological constant that is drastically smaller than what can be explained by conventional particle physics. The Causal Entropic Principle (Bousso, {\it et al}.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have extended this work to use the Causal Entropic Principle to predict the preferred curvature within the "multiverse". We have found that values larger than ρk=40ρm\rho_k = 40\rho_m are disfavored by more than 99.99% and a peak value at ρΛ=7.9×10123\rho_{\Lambda} = 7.9 \times 10^{-123} and ρk=4.3ρm\rho_k =4.3 \rho_m for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.Comment: 5 pages, 3 Figure

    Addendum to paper: Strong-Coupling Behavior of ϕ4\phi^4-Theories and Critical Exponents [Phys. Rev. D 57, 2264 (1998)]

    Full text link
    The graphical extrapolation procedure to infinite order of variational perturbation theory in a recent calculation of critical exponents of three-dimensional ϕ4\phi^4-theories at infinite couplings is improved by another way of plotting the results.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper also at http://www.physik.fu-berlin.de/~kleinert/kleiner_re257a/preprint.htm
    corecore