1,125 research outputs found

    A statistical theory of the mean field

    Full text link
    A statistical theory of the mean field is developed. It is based on the proposition that the mean field can be obtained as an energy average. Moreover, it is assumed that the matrix elements of the residual interaction, obtained after the average interaction is removed, are random with the average value of zero. With these two assumptions one obtains explicit expressions for the mean field and the fluctuation away from the average. The fluctuation is expanded in terms of more and more complex excitations. Using the randomness of the matrix elements one can then obtain formulas for the contribution to the error from each class of complex excitations and a general condition for the convergence of the expansion is derived. It is to be emphasized that no conditions on the nature of the system being studied are made. Making some simplifying assumptions a schematic model is developed. This model is applied to the problem of nuclear matter. The model yields a measure of the strength of the effective interaction. It turns out to be three orders of magnitude less than that calculated using a potential which gives a binding energy of about -7 MeV/nucleon demonstrating the strong damping of the interaction strength induced by the averaging process.Comment: 25 pages, REVTeX, 4 eps figure

    Ground state energy fluctuations in nuclear matter II

    Get PDF
    Improvements are performed on a recently proposed statistical theory of the mean field of a many-fermion system. The dependence of the predictions of the theory upon its two basic ingredients, namely the Hartree-Fock energy and the average energy of the two particle-two hole excitations, is explored.Comment: 16 pages, 1 figure, revte

    Creating stable molecular condensate using a generalized Raman adiabatic passage scheme

    Full text link
    We study the Feshbach resonance assisted stimulated adiabatic passage of an effective coupling field for creating stable molecules from atomic Bose condensate. By exploring the properties of the coherent population trapping state, we show that, contrary to the previous belief, mean-field shifts need not to limit the conversion efficiency as long as one chooses an adiabatic passage route that compensates the collision mean-field phase shifts and avoids the dynamical unstable regime.Comment: 4+\epsilon pages, 3 figure

    Proton-tetraneutron elastic scattering

    Full text link
    We analyze the elastic scattering of protons on a 4n system. This was used as part of the detection technique of a recent experiment [1] to search for the 4n (tetraneutron) as a bound particle. We show that it is unlikely that this process alone could yield the events reported in ref. [1], unless the 4n has an anomalously large backward elastic scattering amplitude.Comment: 6 pages, 2 figures, accepted for publication in Phys. Rev.

    Collisional oscillations of trapped boson-fermion mixtures approaching collapse

    Full text link
    We study the collective modes of a confined gaseous cloud of bosons and fermions with mutual attractive interactions at zero temperature. The cloud consists of a Bose-Einstein condensate and a spin-polarized Fermi gas inside a spherical harmonic trap and the coupling between the two species is varied by increasing either the magnitude of the interspecies s-wave scattering length or the number of bosons. The mode frequencies are obtained in the collisional regime by solving the equations of generalized hydrodynamics and are compared with the spectra calculated in the collisionless regime within a random-phase approximation. We find that, as the mixture is driven towards the collapse instability, the frequencies of the modes of fermionic origin show a blue shift which can become very significant for large numbers of bosons. Instead the modes of bosonic origin show a softening, which becomes most pronounced in the very proximity of collapse. Explicit illustrations of these trends are given for the monopolar spectra, but similar trends are found for the dipolar and quadrupolar spectra except for the surface (n=0) modes which are essentially unaffected by the interactions.Comment: 9 pages, 5 figures, revtex

    Three-body Faddeev-Alt-Grassberger-Sandhas approach to direct nuclear reactions

    Full text link
    Momentum space three-body Faddeev-like equations are used to calculate elastic, transfer and charge exchange reactions resulting from the scattering of deuterons on 12C and 16O or protons on 13C and 17O; 12C and 16O are treated as inert cores. All possible reactions are calculated in the framework of the same model space. Comparison with previous calculations based on approximate methods used in nuclear reaction theory is discussed.Comment: 10 pages, 13 figures, to be published in Phys. Rev.

    Center of mass rotation and vortices in an attractive Bose gas

    Full text link
    The rotational properties of an attractively interacting Bose gas are studied using analytical and numerical methods. We study perturbatively the ground state phase space for weak interactions, and find that in an anharmonic trap the rotational ground states are vortex or center of mass rotational states; the crossover line separating these two phases is calculated. We further show that the Gross-Pitaevskii equation is a valid description of such a gas in the rotating frame and calculate numerically the phase space structure using this equation. It is found that the transition between vortex and center of mass rotation is gradual; furthermore the perturbative approach is valid only in an exceedingly small portion of phase space. We also present an intuitive picture of the physics involved in terms of correlated successive measurements for the center of mass state.Comment: version2, 17 pages, 5 figures (3 eps and 2 jpg

    Creating Ground State Molecules with Optical Feshbach Resonances in Tight Traps

    Full text link
    We propose to create ultracold ground state molecules in an atomic Bose-Einstein condensate by adiabatic crossing of an optical Feshbach resonance. We envision a scheme where the laser intensity and possibly also frequency are linearly ramped over the resonance. Our calculations for 87^{87}Rb show that for sufficiently tight traps it is possible to avoid spontaneous emission while retaining adiabaticity, and conversion efficiencies of up to 50% can be expected

    Irreversible quantum graphs

    Full text link
    Irreversibility is introduced to quantum graphs by coupling the graphs to a bath of harmonic oscillators. The interaction which is linear in the harmonic oscillator amplitudes is localized at the vertices. It is shown that for sufficiently strong coupling, the spectrum of the system admits a new continuum mode which exists even if the graph is compact, and a {\it single} harmonic oscillator is coupled to it. This mechanism is shown to imply that the quantum dynamics is irreversible. Moreover, it demonstrates the surprising result that irreversibility can be introduced by a "bath" which consists of a {\it single} harmonic oscillator
    corecore