1,557 research outputs found

    Modelling of the diffusion of carbon dioxide in polyimide matrices by computer simulation

    Get PDF
    Computer aided molecular modelling is used to visualize the motion of CO2 gas molecules inside a polyimide polymer matrix. The polymers simulated are two 6FDA-bases polyimides, 6FDA-4PDA and 6FDA-44ODA. These polymers have also been synthesized in our laboratory, and thus the simulated properties could directly be compared with “real-world” data. The simulation experiments have been performed using the GROMOS1 package. The polymer boxes were created using the soft-core method, with short (11 segments) chains. This results in highly relaxed and totally amorphous polyimide matrices. The motion of randomly placed CO2 molecules in the boxes during molecular dynamics runs was followed, revealing three types of motion: jumping, continuous- and trapped motion. The calculated diffusivities are unrealistic, but possible shortcomings in our model are given

    Magneto-optical Kerr effect in Eu1xCaxB6Eu_{1-x}Ca_{x}B_{6}

    Full text link
    We have measured the magneto-optical Kerr rotation of ferromagnetic Eu1xCaxB6Eu_{1-x}Ca_{x}B_{6} with x=0.2 and 0.4, as well as of YbB6YbB_{6} serving as the non-magnetic reference material. As previously for EuB6EuB_{6}, we could identify a feature at 1 eVeV in the Kerr response which is related with electronic transitions involving the localized 4f electron states. The absence of this feature in the data for YbB6YbB_{6} confirms the relevance of the partially occupied 4f states in shaping the magneto-optical features of EuEu-based hexaborides. Disorder by CaCa-doping broadens the itinerant charge carrier contribution to the magneto-optical spectra

    Solar simulation with a rectangular beam

    Get PDF
    An existing space simulation test facility was modified by enlarging the solar simulator. Because of the restrictions imposed by existing equipment, the shape of the solar beam was altered from a circular to a rectangular cross section in order to adapt the test facility to test objects of increased size. This modification is described together with the results of preliminary measurements

    Carrier-Induced Magnetic Circular Dichloism in the Magnetoresistive Pyrochlore Tl2Mn2O7

    Full text link
    Infrared magnetic circular dichloism (MCD), or equivalently magneto-optical Kerr effect, has been measured on the Tl2Mn2O7 pyrochlore, which is well known for exhibiting a large magnetoresistance around the Curie temperature T_C ~ 120 K. A circularly polarized, infrared synchrotron radiation is used as the light source. A pronounced MCD signal is observed exactly at the plasma edge of the reflectivity near and below T_c. However, contrary to the conventional behavior of MCD for ferromagnets, the observed MCD of Tl2Mn2O7 grows with the applied magnetic field, and not scaled with the internal magnetization. It is shown that these results can be basically understood in terms of a classical magnetoplasma resonance. The absence of a magnetization-scaled MCD indicates a weak spin-orbit coupling of the carriers in Tl2Mn2O7. We discuss the present results in terms of the microscopic electronic structures of Tl2Mn2O7.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp

    Histone H3 Lysine 27 Methylation Asymmetry on Developmentally-Regulated Promoters Distinguish the First Two Lineages in Mouse Preimplantation Embryos

    Get PDF
    First lineage specification in the mammalian embryo leads to formation of the inner cell mass (ICM) and trophectoderm (TE), which respectively give rise to embryonic and extraembryonic tissues. We show here that this first differentiation event is accompanied by asymmetric distribution of trimethylated histone H3 lysine 27 (H3K27me3) on promoters of signaling and developmentally-regulated genes in the mouse ICM and TE. A genome-wide survey of promoter occupancy by H3K4me3 and H3K27me3 indicates that both compartments harbor promoters enriched in either modification, and promoters co-enriched in trimethylated H3K4 and H3K27 linked to developmental and signaling functions. The majority of H3K4/K27me3 co-enriched promoters are distinct between the two lineages, primarily due to differences in the distribution of H3K27me3. Derivation of embryonic stem cells leads to significant losses and gains of H3K4/K27me3 co-enriched promoters relative to the ICM, with distinct contributions of (de)methylation events on K4 and K27. Our results show histone trimethylation asymmetry on promoters in the first two developmental lineages, and highlight an epigenetic skewing associated with embryonic stem cell derivation

    The receptor guanylyl cyclase Npr2 is essential for sensory axon bifurcation within the spinal cord

    Get PDF
    Sensory axonal projections into the spinal cord display a highly stereotyped pattern of T- or Y-shaped axon bifurcation at the dorsal root entry zone (DREZ). Here, we provide evidence that embryonic mice with an inactive receptor guanylyl cyclase Npr2 or deficient for cyclic guanosine monophosphate-dependent protein kinase I (cGKI) lack the bifurcation of sensory axons at the DREZ, i.e., the ingrowing axon either turns rostrally or caudally. This bifurcation error is maintained to mature stages. In contrast, interstitial branching of collaterals from primary stem axons remains unaffected, indicating that bifurcation and interstitial branching are processes regulated by a distinct molecular mechanism. At a functional level, the distorted axonal branching at the DREZ is accompanied by reduced synaptic input, as revealed by patch clamp recordings of neurons in the superficial layers of the spinal cord. Hence, our data demonstrate that Npr2 and cGKI are essential constituents of the signaling pathway underlying axonal bifurcation at the DREZ and neuronal connectivity in the dorsal spinal cord

    A Ditopic Phosphane-decorated Benzenedithiol as Scaffold for Di- and Trinuclear Complexes of Group-10 Metals and Gold

    Get PDF
    The ability of 3-(diphenylphosphinomethyl)-benzene-1,2-dithiol (pbdtH(2)) to act as ditopic ligand was probed in reactions with selected group-10-metal complexes. Reactions with [(cod)PdCl2] afforded a mixture of products identified as [Pd(pbdtH)(2)], [Pd-2(mu(2)-pbdt)(2)] and [Pd-3(mu(2)-pbdt)(2)Cl-2]. The polynuclear complexes could be isolated after suitably adjusting the reaction conditions, and heating of a mixture in a microwave reactor effected partial conversion into a further complex [Pd-3(mu(2)-pbdt)(3)]. Reaction of pbdtH(2) with [Ni(H2O)(6)Cl-2] gave rise to a complex [Ni-2(mu(2)-pbdt)(2)], which was shown to undergo two reversible 1e(-)-reduction steps. Reaction of [Pd(pbdtH)(2)] with [Au(PPh3)Cl] afforded heterotrinuclear [PdAu2(mu(2)-pbdt)(2)(PPh3)]. All complexes were characterized by analytical, spectroscopic and single-crystal X-ray diffraction studies. Their molecular structures confirm the ability of the pbdt(2-) unit to support simultaneous P,S- and S,S-chelating coordination to two metal centers.Peer reviewe

    A Pilot Study with a Novel Setup for Collaborative Play of the Humanoid Robot KASPAR with children with autism

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.This article describes a pilot study in which a novel experimental setup, involving an autonomous humanoid robot, KASPAR, participating in a collaborative, dyadic video game, was implemented and tested with children with autism, all of whom had impairments in playing socially and communicating with others. The children alternated between playing the collaborative video game with a neurotypical adult and playing the same game with the humanoid robot, being exposed to each condition twice. The equipment and experimental setup were designed to observe whether the children would engage in more collaborative behaviours while playing the video game and interacting with the adult than performing the same activities with the humanoid robot. The article describes the development of the experimental setup and its first evaluation in a small-scale exploratory pilot study. The purpose of the study was to gain experience with the operational limits of the robot as well as the dyadic video game, to determine what changes should be made to the systems, and to gain experience with analyzing the data from this study in order to conduct a more extensive evaluation in the future. Based on our observations of the childrens’ experiences in playing the cooperative game, we determined that while the children enjoyed both playing the game and interacting with the robot, the game should be made simpler to play as well as more explicitly collaborative in its mechanics. Also, the robot should be more explicit in its speech as well as more structured in its interactions. Results show that the children found the activity to be more entertaining, appeared more engaged in playing, and displayed better collaborative behaviours with their partners (For the purposes of this article, ‘partner’ refers to the human/robotic agent which interacts with the children with autism. We are not using the term’s other meanings that refer to specific relationships or emotional involvement between two individuals.) in the second sessions of playing with human adults than during their first sessions. One way of explaining these findings is that the children’s intermediary play session with the humanoid robot impacted their subsequent play session with the human adult. However, another longer and more thorough study would have to be conducted in order to better re-interpret these findings. Furthermore, although the children with autism were more interested in and entertained by the robotic partner, the children showed more examples of collaborative play and cooperation while playing with the human adult.Peer reviewe
    corecore