2,356 research outputs found

    Method of stabilizing flueric vortex valves and vortex amplifiers

    Get PDF
    Inducing losses in the vortex chamber of vortex valves and vortex amplifiers resolves the problem of unstable operation caused by a sufficiently large positive feedback. Induced losses also reduce pressure gain and throttling range of vortex pressure amplifier

    The Connection Between X-ray Binaries and Star Clusters in NGC 4449

    Full text link
    We present 23 candidate X-ray binaries with luminosities down to 1.8x10^36 erg/s, in the nearby starburst galaxy NGC 4449, from observations totaling 105 ksec taken with the ACIS-S instrument on the Chandra Space Telescope. We determine count rates, luminosities, and colors for each source, and perform spectral fits for sources with sufficient counts. We also compile a new catalog of 129 compact star clusters in NGC 4449 from high resolution, multi-band optical images taken with the Hubble Space Telescope, doubling the number of clusters known in this galaxy. The UBVI,Ha luminosities of each cluster are compared with predictions from stellar evolution models to estimate their ages and masses. We find strong evidence for a population of very young massive, black-hole binaries, which comprise nearly 50% of the detected X-ray binaries in NGC 4449. Approximately a third of these remain within their parent star clusters, which formed t < 6-8 Myr ago, while others have likely been ejected from their parent clusters. We also find evidence for a population of somewhat older X-ray binaries, including both supergiant and Be-binaries, which appear to be associated with somewhat older t ~ 100-400 Myr star clusters, and one X-ray binary in an ancient (t ~ 10 Gyr) globular cluster. Our results suggest that detailed information on star clusters can significantly improve constraints on X-ray binary populations in star-forming galaxies

    Complex Networks on a Rock Joint

    Full text link
    A complex network approach on a rough fracture is developed. In this manner, some hidden metric spaces (similarity measurements) between apertures profiles are set up and a general evolutionary network in two directions (in parallel and perpendicular to the shear direction) is constructed. Also, an algorithm (COmplex Networks on Apertures: CONA) is proposed in which evolving of a network is accomplished using preferential detachments and attachments of edges (based on a competition and game manner) while the number of nodes is fixed. Also, evolving of clustering coefficients and number of edges display similar patterns as well as are appeared in shear stress, hydraulic conductivity and dilation changes, which can be engaged to estimate shear strength distribution of asperities.Comment: ROCKENG09: Proceedings of the 3rd CANUS Rock Mechanics Symposium, Toronto, May 2009 (Ed: M.Diederichs and G. Grasselli

    Formation of Globular Clusters in Hierarchical Cosmology: ART and Science

    Full text link
    We test the hypothesis that globular clusters form in supergiant molecular clouds within high-redshift galaxies. Numerical simulations demonstrate that such large, dense, and cold gas clouds assemble naturally in current hierarchical models of galaxy formation. These clouds are enriched with heavy elements from earlier stars and could produce star clusters in a similar way to nearby molecular clouds. The masses and sizes of the model clusters are in excellent agreement with the observations of young massive clusters. Do these model clusters evolve into globular clusters that we see in our and external galaxies? In order to study their dynamical evolution, we calculate the orbits of model clusters using the outputs of the cosmological simulation of a Milky Way-sized galaxy. We find that at present the orbits are isotropic in the inner 50 kpc of the Galaxy and preferentially radial at larger distances. All clusters located outside 10 kpc from the center formed in the now-disrupted satellite galaxies. The spatial distribution of model clusters is spheroidal, with a power-law density profile consistent with observations. The combination of two-body scattering, tidal shocks, and stellar evolution results in the evolution of the cluster mass function from an initial power law to the observed log-normal distribution. However, not all initial conditions and not all evolution scenarios are consistent with the observed mass function.Comment: 8 pages, invited review for conference "Globular Clusters, Guide to Galaxies", 6-10 March 2006, University of Concepcion, Chile, ed. T. Richtler, et a

    Deep Luminosity Functions of Old and Intermediate-Age Globular Clusters in NGC 1316: Evidence for Dynamical Evolution of Second-Generation Globular Clusters

    Full text link
    The Advanced Camera for Surveys on board the Hubble Space Telescope has been used to obtain deep high-resolution images of the giant early-type galaxy NGC 1316 which is an obvious merger remnant. These observations supersede previous, shallower observations which revealed the presence of a population of metal-rich globular clusters of intermediate age (~ 3 Gyr). We detect a total of 1496 cluster candidates, almost 4 times as many as from the previous WFPC2 images. We confirm the bimodality of the color distribution of clusters, even in V-I, with peak colors 0.93 and 1.06. The large number of detected clusters allows us to evaluate the globular cluster luminosity functions as a function of galactocentric radius. We find that the luminosity function of the inner 50% of the intermediate-age, metal-rich (`red') population of clusters differs markedly from that of the outer 50%. In particular, the luminosity function of the inner 50% of the red clusters shows a clear flattening consistent with a turnover that is about 1.0 mag fainter than the turnover of the blue clusters. This constitutes the first direct evidence that metal-rich cluster populations formed during major mergers of gas-rich galaxies can evolve dynamically (through disruption processes) into the red, metal-rich cluster populations that are ubiquitous in `normal' giant ellipticals.Comment: Accepted for publication in ApJ Letters; 4 pages in emulateapj style. 3 figure

    Shear thickening of cornstarch suspensions as a re-entrant jamming transition

    Get PDF
    We study the rheology of cornstarch suspensions, a dense system of non-Brownian particles that exhibits shear thickening, i.e. a viscosity that increases with increasing shear rate. Using MRI velocimetry we show that the suspension has a yield stress. From classical rheology it follows that as a function of the applied stress the suspension is first solid (yield stress), then liquid and then solid again when it shear thickens. The onset shear rate for thickening is found to depend on the measurement geometry: the smaller the gap of the shear cell, the lower the shear rate at which thickening occurs. Shear thickening can then be interpreted as the consequence of the Reynolds dilatancy: the system under flow wants to dilate but instead undergoes a jamming transition because it is confined, as confirmed by measurement of the dilation of the suspension as a function of the shear rate

    Potential formation sites of super star clusters in ultra-luminous infrared galaxies

    Get PDF
    Recent observational results on high spatial resolution images of ultra-luminous infrared galaxies (ULIGs) have revealed very luminous, young, compact, and heavily obscured super star clusters in their central regions, suggested to be formed by gas-rich major mergers. By using stellar and gaseous numerical simulations of galaxy mergers, we firstly demonstrate that the central regions of ULIGs are the most promising formation sites of super star clusters owing to the rather high gaseous pressure of the interstellar medium. Based on simple analytical arguments, we secondly discuss the possibility that super star clusters in an ULIG can be efficiently transferred into the nuclear region owing to dynamical friction and consequently merge with one another to form a single compact stellar nucleus with a seed massive black hole. We thus suggest that multiple merging between super star clusters formed by nuclear starbursts in the central regions of ULIGs can result in the formation of massive black holes.Comment: 12 pages 4 figures, 2001, accepted by ApJ

    Airborne Particles in Museums

    Get PDF
    Presents one in a series of research activities aimed at a better understanding of the origin and fate of air pollution within the built environment
    • …
    corecore