1,739 research outputs found

    Management of imatinib-resistant CML patients

    Get PDF
    Imatinib has had marked impact on outcomes in chronic myelogenous leukemia (CML) patients for all stages of the disease and is endorsed by international treatment guidelines as the first line option. Although imatinib is highly effective and well tolerated, the development of resistance represents a clinical challenge. Since the most frequently identified mechanism of acquired imatinib resistance is bcr-abl kinase domain point mutations, periodic hematologic, cytogenetic, and molecular monitoring is critical throughout imatinib therapy. Once cytogenetic remission is achieved, residual disease can be monitored by bcr-abl transcript levels as assayed by reverse transcription polymerase chain reaction (RT-PCR). Detection of bcr-abl mutants prior to and during imatinib therapy can aid in risk stratification as well as in determining therapeutic strategies. Thus, mutation screening is indicated in patients lacking or losing hematologic response. Moreover, search for mutations should also be performed when a 3-log reduction of bcr-abl transcripts is not achieved or there is a reproducible increase of transcript levels. In patients harboring mutations which confer imatinib resistance, novel second line tyrosine kinase inhibitors have demonstrated encouraging efficacy with low toxicity. Only the T315I bcr-abl mutant has proved totally resistant to all clinically available bcr-abl inhibitors. Strategies to further increase the rates of complete molecular remissions represent the next frontier in the targeted therapy of CML patients

    International Federation of Clinical Chemistry (IFCC): Scientific Division, Committee on pH, Blood Gases and Electrolytes: Guidelines for Transcutaneouspo2andpco2 Measurement

    Get PDF
    This document provides guidelines for the terminology, methodology, and for the interpretation of data obtained from the use of skin (transcutaneous) po2 and pco2 electrodes. The transcutaneous technique has found special application in newborn infants. The causes of analytical bias with respect to arterial blood gas values, and imprecision obtained with transcutaneous pco2 electrodes, are reviewed. Electrode temperatures above 44°C should not be used routinely, and, at a measuring temperature of 44°C, the measuring site should be changed at least every 4 h to avoid skin burns

    The Strange Prospects for Astrophysics

    Full text link
    The implications of the formation of strange quark matter in neutron stars and in core-collapse supernovae is discussed with special emphasis on the possibility of having a strong first order QCD phase transition at high baryon densities. If strange quark matter is formed in core-collapse supernovae shortly after the bounce, it causes the launch of a second outgoing shock which is energetic enough to lead to a explosion. A signal for the formation of strange quark matter can be read off from the neutrino spectrum, as a second peak in antineutrinos is released when the second shock runs over the neutrinosphere.Comment: 10 pages, 8 figures, invited talk given at the international conference on strangeness in quark matter (SQM2008), Beijing, October 6-10, Beijing, China, version to appear in J. Phys.

    Electrolysis Propulsion for Spacecraft Applications

    Get PDF
    Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined

    The Relationship Between Belief and Credence

    Get PDF
    Sometimes epistemologists theorize about belief, a tripartite attitude on which one can believe, withhold belief, or disbelieve a proposition. In other cases, epistemologists theorize about credence, a fine-grained attitude that represents one’s subjective probability or confidence level toward a proposition. How do these two attitudes relate to each other? This article explores the relationship between belief and credence in two categories: descriptive and normative. It then explains the broader significance of the belief-credence connection and concludes with general lessons from the debate thus far

    The Evolution of PSR J0737-3039B and a Model for Relativistic Spin Precession

    Full text link
    We present the evolution of the radio emission from the 2.8-s pulsar of the double pulsar system PSR J0737-3039A/B. We provide an update on the Burgay et al. (2005) analysis by describing the changes in the pulse profile and flux density over five years of observations, culminating in the B pulsar's radio disappearance in 2008 March. Over this time, the flux density decreases by 0.177 mJy/yr at the brightest orbital phases and the pulse profile evolves from a single to a double peak, with a separation rate of 2.6 deg/yr. The pulse profile changes are most likely caused by relativistic spin precession, but can not be easily explained with a circular hollow-cone beam as in the model of Clifton & Weisberg (2008). Relativistic spin precession, coupled with an elliptical beam, can model the pulse profile evolution well. This particular beam shape predicts geometrical parameters for the two bright orbital phases which are consistent and similar to those derived by Breton et al. (2008). However, the observed decrease in flux over time and B's eventual disappearance cannot be easily explained by the model and may be due to the changing influence of A on B.Comment: 20 pages, 18 figures, Accepted by ApJ on 2 August 201

    The Wisconsin Plasma Astrophysics Laboratory

    Full text link
    The Wisconsin Plasma Astrophysics Laboratory (WiPAL) is a flexible user facility designed to study a range of astrophysically relevant plasma processes as well as novel geometries that mimic astrophysical systems. A multi-cusp magnetic bucket constructed from strong samarium cobalt permanent magnets now confines a 10 m3^3, fully ionized, magnetic-field free plasma in a spherical geometry. Plasma parameters of Te≈5 T_{e}\approx5 to 2020 eV and ne≈1011n_{e}\approx10^{11} to 5×10125\times10^{12} cm−3^{-3} provide an ideal testbed for a range of astrophysical experiments including self-exciting dynamos, collisionless magnetic reconnection, jet stability, stellar winds, and more. This article describes the capabilities of WiPAL along with several experiments, in both operating and planning stages, that illustrate the range of possibilities for future users.Comment: 21 pages, 12 figures, 2 table

    Circular Polarization in Pulsar Integrated Profiles: Updates

    Full text link
    We update the systematic studies of circular polarization in integrated pulse profiles by Han et al (1998). Data of circular polarization profiles are compiled. Sense reversals can occur in core or cone components, or near the intersection between components. The correlation between the sense of circular polarization and the sense of position angle variation for conal-double pulsars is confirmed with a much large database. Circular polarization of some pulsars has clear changes with frequency. Circular polarization of millisecond pulsars is marginally different from that of normal pulsars.Comment: 10 pages, 6 figures, accepted and will be published soon by Chinese Journal of Astronomy and Astrophysics (ChJAA

    Observations and Modelling of Relativistic Spin Precession in PSR J1141-6545

    Full text link
    Observations of the binary pulsar PSR J1141-6545 using the Parkes radio telescope over 9.3 years show clear time-variations in pulse width, shape and polarization. We interpret these variations in terms of relativistic precession of the pulsar spin axis about the total angular momentum vector of the system. Over the nine years, the pulse width at the 50% level has changed by more than a factor of three. Large variations have also been observed in the 1400-MHz mean flux density. The pulse polarization has been monitored since 2004 April using digital filterbank systems and also shows large and systematic variations in both linear and circular polarization. Position angle variations, both across the pulse profile and over the data span, are complex, with major differences between the central and outer parts of the pulse profile. Modelling of the observed position angle variations by relativistic precession of the pulsar spin axis shows that the spin-orbit misalignment angle is about 110 deg and that the precessional phase has passed through 180 deg during the course of our observations. At the start of our observations, the line-of-sight impact parameter was about 4 deg in magnitude and it reached a minimum very close to 0 deg around early 2007, consistent with the observed pulse width variations. We have therefore mapped approximately one half of the emission beam, showing that it is very asymmetric with respect to the magnetic axis. The derived precessional parameters imply that the pre-supernova star had a mass of about 2 Msun and that the supernova recoil kick velocity was relatively small. With the reversal in the rate of change of the impact parameter, we predict that over the next decade we will see a reversed "replay" of the variations observed in the past decade.Comment: 45 pages, 19 figures, 6 tables, accepted by Astrophysical Journa
    • …
    corecore