629 research outputs found

    Spin and orbital excitation spectrum in the Kugel-Khomskii model

    Full text link
    We discuss spin and orbital ordering in the twofold orbital degenerate superexchange model in three dimensions relevant to perovskite transition metal oxides. We focus on the particular point on the classical phase diagram where orbital degeneracy is lifted by quantum effects exclusively. Dispersion and damping of the spin and orbital excitations are calculated at this point taking into account their mutual interaction. Interaction corrections to the mean-field order parameters are found to be small. We conclude that quasi-one-dimensional Neel spin order accompanied by the uniform d_{3z^2-r^2}-type orbital ordering is stable against quantum fluctuations.Comment: 4 pages with 3 PS figures, 1 table, RevTeX, accepted to Phys. Rev. B. Rapid Communicatio

    The implementation of a lossless data compression module in an advanced orbiting system: Analysis and development

    Get PDF
    Data compression has been proposed for several flight missions as a means of either reducing on board mass data storage, increasing science data return through a bandwidth constrained channel, reducing TDRSS access time, or easing ground archival mass storage requirement. Several issues arise with the implementation of this technology. These include the requirement of a clean channel, onboard smoothing buffer, onboard processing hardware and on the algorithm itself, the adaptability to scene changes and maybe even versatility to the various mission types. This paper gives an overview of an ongoing effort being performed at Goddard Space Flight Center for implementing a lossless data compression scheme for space flight. We will provide analysis results on several data systems issues, the performance of the selected lossless compression scheme, the status of the hardware processor and current development plan

    Trimer Formation and Metal-Insulator Transition in Orbital Degenerate Systems on a Triangular Lattice

    Full text link
    As a prototypical self-organization in the system with orbital degeneracy, we theoretically investigate trimer formation on a triangular lattice, as observed in LiVO2. From the analysis of an effective spin-orbital coupled model in the strong correlation limit, we show that the previously-proposed orbital-ordered trimer state is not the lowest-energy state for a finite Hund's-rule coupling. Instead, exploring the ground state in a wide range of parameters for a multiorbital Hubbard model, we find an instability toward a different orbital-ordered trimer state in the intermediately correlated regime in the presence of trigonal crystal field. The trimer phase appears in the competing region among a paramagnetic metal, band insulator, and Mott insulator. The underlying mechanism is nesting instability of the Fermi surface by a synergetic effect of Coulomb interactions and trigonal-field splitting. The results are compared with experiments in triangularlattice compounds, LiVX2 (X=O, S, Se) and NaVO2.Comment: 4 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp

    Gravitational Lensing by Galaxy Groups in the Hubble Deep Field

    Full text link
    We investigate strong lensing of galaxies in the Hubble Deep Field by foreground groups and clusters of galaxies with masses from 101310^{13} to 10^{15} \MSun. Over this mass range, groups with the profile of Navarro, Frenk, & White (1995) are less efficient than singular isothermal spheres at producing multiple images of galaxies, by factors of 5×1025 \times 10^{- 2} to 10310^{- 3}. This difference highlights the sensitivity of the lensing cross section to the central density profile. Nonetheless, with either profile we find that the expected number of galaxies lensed by groups in the Hubble Deep Field is at most 1\lesssim 1, consistent with the lack of clearly identified group lens systems.Comment: 33 pages, 12 EPS figures, accepted by Ap

    Conservation Laws and Cosmological Perturbations in Curved Universes

    Get PDF
    When working in synchronous gauges, pseudo-tensor conservation laws are often used to set the initial conditions for cosmological scalar perturbations, when those are generated by topological defects which suddenly appear in an up to then perfectly homogeneous and isotropic universe. However those conservation laws are restricted to spatially flat (K=0) Friedmann-Lema\^\i tre spacetimes. In this paper, we first show that in fact they implement a matching condition between the pre- and post- transition eras and, in doing so, we are able to generalize them and set the initial conditions for all KK. Finally, in the long wavelength limit, we encode them into a vector conservation law having a well-defined geometrical meaning.Comment: 15 pages, no figure, to appear in Phys. Rev.

    Spin Order due to Orbital Fluctuations: Cubic Vanadates

    Full text link
    We investigate the highly frustrated spin and orbital superexchange interactions in cubic vanadates. The fluctuations of t2gt_{2g} orbitals trigger a {\it novel mechanism of ferromagnetic interactions} between spins S=1 of V3+^{3+} ions along one of the cubic directions which operates already in the absence of Hund's rule exchange JHJ_H, and leads to the C-type antiferromagnetic phase in LaVO3_3. The Jahn-Teller effect can stabilize the orbital ordering and the G-type antiferromagnetic phase at low temperatures, but large entropy due to orbital fluctuations favors again the C-phase at higher temperatures, as observed in YVO3_3.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Superconductivity Induced by Bond Breaking in the Triangular Lattice of IrTe2

    Get PDF
    IrTe2, a layered compound with a triangular iridium lattice, exhibits a structural phase transition at approximately 250 K. This transition is characterized by the formation of Ir-Ir bonds along the b-axis. We found that the breaking of Ir-Ir bonds that occurs in Ir1-xPtxTe2 results in the appearance of a structural critical point in the T = 0 limit at xc = 0.035. Although both IrTe2 and PtTe2 are paramagnetic metals, superconductivity at Tc = 3.1 K is induced by the bond breaking in a narrow range of x > xc in Ir1-xPtxTe2. This result indicates that structural fluctuations can be involved in the emergence of superconductivity.Comment: 10 pages, 4 figure

    Orbital Ordering Structures in (Nd,Pr)0.5Sr0.5MnO3 Manganite Thin Films on Perovskite (011) Substrates

    Full text link
    Structural study of orbital-ordered manganite thin films has been conducted using synchrotron radiation, and a ground state electronic phase diagram is made. The lattice parameters of four manganite thin films, Nd0.5Sr0.5MnO3 (NSMO) or Pr0.5Sr0.5MnO3 (PSMO) on (011) surfaces of SrTiO3 (STO) or [(LaAlO3){0.3}(SrAl0.5Ta0.5O3){0.7}] (LSAT), were measured as a function of temperature. The result shows, as expected based on previous knowledge of bulk materials, that the films' resistivity is closely related to their structures. Observed superlattice reflections indicate that NSMO thin films have an antiferro-orbital-ordered phase as their low-temperature phase while PSMO film on LSAT has a ferro-orbital-ordered phase, and that on STO has no orbital-ordered phase. A metallic ground state was observed only in films having a narrow region of A-site ion radius, while larger ions favor ferro-orbital-ordered structure and smaller ions stabilize antiferro-orbital-ordered structure. The key to the orbital-ordering transition in (011) film is found to be the in-plane displacement along [0-1 1] direction.Comment: 19pages, 11 figure

    Orbital excitations in LaMnO3_3

    Get PDF
    We study the recently observed orbital excitations, orbitons, and treat electron-electron correlations and lattice dynamics on equal footing. It is shown that the orbiton energy and dispersion are determined by both correlations and lattice-vibrations. The electron-phonon coupling causes satellite structures in the orbiton spectral function and the elementary excitations of the system are mixed modes with both orbital and phonon character. It is proposed that the satellite structures observed in recent Raman-scattering experiments on LaMnO3_3 are actually orbiton derived satellites in the phonon spectral function, caused by the phonon-orbiton interaction.Comment: 4 pages, 3 figures embedde

    Threshold electronic structure at the oxygen K edge of 3d transition metal oxides: a configuration interaction approach

    Full text link
    It has been generally accepted that the threshold structure observed in the oxygen K edge X-ray absorption spectrum in 3d transition metal oxides represents the electronic structure of the 3d transition metal. There is, however, no consensus about the correct description. We present an interpretation, which includes both ground state hybridization and electron correlation. It is based on a configuration interaction cluster calculation using a MO6 cluster. The oxygen K edge spectrum is calculated by annihilating a ligand hole in the ground state and is compared to calculations representing inverse photoemission experiments in which a 3d transition metal electron is added. Clear differences are observed related to the amount of ligand hole created in the ground state. Two "rules" connected to this are discussed. Comparison with experimental data of some early transition metal compounds is made and shows that this simple cluster approach explains the experimental features quite well.Comment: 10 pages, submitted to Phys. Rev. B, tried to make a better PS file
    corecore