5,275 research outputs found

    Collective modes and sound propagation in a p-wave superconductor: Sr2_2RuO4_4

    Full text link
    There are five distinct collective modes in the recently discovered p-wave superconductor Sr2_2RuO4_4; phase and amplitude modes of the order parameter, clapping mode (real and imaginary), and spin wave. The first two modes also exist in the ordinary s-wave superconductors, while the clapping mode with the energy 2Δ(T)\sqrt{2} \Delta(T) is unique to Sr2_2RuO4_4 and couples to the sound wave. Here we report a theoretical study of the sound propagation in a two dimensional p-wave superconductor. We identified the clapping mode and study its effects on the longitudinal and transverse sound velocities in the superconducting state. In contrast to the case of 3^3He, there is no resonance absorption associated with the collective mode, since in metals ω/(vFq)1\omega/(v_F |{\bf q}|) \ll 1, where vFv_F is the Fermi velocity, {\bf q} is the wave vector, and ω\omega is the frequency of the sound wave. However, the velocity change in the collisionless limit gets modified by the contribution from the coupling to the clapping mode. We compute this contribution and comment on the visibility of the effect. In the diffusive limit, the contribution from the collective mode turns out to be negligible. The behaviors of the sound velocity change and the attenuation coefficient near TcT_c in the diffusive limit are calculated and compared with the existing experimental data wherever it is possible. We also present the results for the attenuation coefficients in both of the collisionless and diffusive limits at finite temperatures.Comment: RevTex, 12 pages, 2 figures, Replaced by the published versio

    On Measuring Condensate Fraction in Superconductors

    Full text link
    An analysis of off-diagonal long-range order in superconductors shows that the spin-spin correlation function is significantly influenced by the order if the order parameter is anisotropic on a microscopic scale. Thus, magnetic neutron scattering can provide a direct measurement of the condensate fraction of a superconductor. It is also argued that recent measurements in high temperature superconductors come very close to achieving this goal.Comment: 4 pages, 1 eps figure, RevTex. A new possibility in the underdoped regime is added. Other corrections are mino

    Space shuttle low pressure auxiliary propulsion subsystem design definition Subtask A report

    Get PDF
    Space shuttle low pressure, hydrogen oxygen auxiliary propulsion subsystem requirements, tradeoffs, and concept selectio

    Incommensurate Charge and Spin Fluctuations in d-wave Superconductors

    Full text link
    We show analytic results for the irreducible charge and spin susceptibilities, χ0(ω,Q)\chi_0 (\omega, {\bf Q}), where Q{\bf Q} is the momentum transfer between the nodes in d-wave superconductors. Using the BCS theory and a circular Fermi surface, we find that the singular behavior of the irreducible charge susceptibility leads to the dynamic incommensurate charge collective modes. The peaks in the charge structure factor occur at a set of wave vectors which form an ellipse around Qπ=(π,π){\bf Q}_{\pi}=(\pi,\pi) and Q0=(0,0){\bf Q}_0=(0,0) in momentum space with momentum dependent spectral weight. It is also found that, due to the non-singular irreducible spin susceptibility, an extremely strong interaction via random phase approximation is required to support the magnetic peaks near Qπ{\bf Q}_{\pi}. Under certain conditions, the peaks in the magnetic structure factor occur near Q=(π,π(1±δ)){\bf Q}=(\pi,\pi (1 \pm \delta)) and (π(1±δ),π)(\pi (1 \pm \delta),\pi).Comment: 5 pages, 3 figure

    Infrared Excess and Molecular Gas in the Galactic Worm GW46.4+5.5

    Get PDF
    We have carried out high-resolution (~3') HI and CO line observations along one-dimensional cuts through the Galactic worm GW46.4+5.5. By comparing the HI data with IRAS data, we have derived the distributions of I_100 excess and tau_100 excess, which are respectively the 100 mum intensity and 100 mum optical depth in excess of what would be expected from HI emission. In two observed regions, we were able to make a detailed comparison of the infrared excess and the CO emission. We have found that tau_100 excess has a very good correlation with the integrated intensity of CO emission, W_CO, but I_100 excess does not. There are two reasons for the poor correlation between I_100 excess and W_CO: firstly, there are regions with enhanced infrared emissivity without CO, and secondly, dust grains associated with molecular gas have a low infrared emissivity. In one region, these two factors completely hide the presence of molecular gas in the infrared. In the second region, we could identify the area with molecular gas, but I_100 excess significantly underestimates the column density of molecular hydrogen because of the second factor mentioned above. We therefore conclude that tau_100 excess, rather than I_100 excess, is an accurate indicator of molecular content along the line of sight. We derive tau_100/N(H)=(1.00+-0.02)*10^-5~(10^20 cm^-2)^-1, and X=N(H_2)/W_CO=~0.7*10^20 cm^-2 (K km s^-1)^-1. Our results suggest that I_100 excess could still be used to estimate the molecular content if the result is multiplied by a correction factor xi_c=_HI/_H_2 (~2 in the second region), which accounts for the different infrared emissivities of atomic and molecular gas. We also discuss some limitations of this work.Comment: 10 pages, 9 postscript figures, uses aas2pp4.sty to be published in Astrophyslcal Journa

    Half-quantum vortex and d-soliton in Sr2_2RuO4_4

    Full text link
    Assuming that the superconductivity in Sr2_2RuO4_4 is described by a planar p-wave order parameter, we consider possible topological defects in Sr2_2RuO4_4. In particular, it is shown that both of the d^{\hat d}-soliton and half-quantum vortex can be created in the presence of the magnetic field parallel to the aa-bb plane. We discuss how one can detect the d^{\hat d}-soliton and half-quantum vortex experimentally.Comment: 8 pages, 3 figure

    Mechanism of spin-triplet superconductivity in Sr2RuO4

    Full text link
    The unique Fermi surfaces and their nesting properties of Sr2RuO4 are considered. The existence of unconventional superconductivity is shown microscopically, for the first time, from the magnetic interactions (due to nesting) and the phonon-mediated interactions. The odd-parity superconductivity is favored in the α\alpha and β\beta sheets of the Fermi surface, and the various superconductivities are possible in the γ\gamma sheet. There are a number of possible odd-parity gaps, which include the gaps with nodes, the breaking of time-reversal symmetry and dz^\vec{d}\parallel \hat{z}.Comment: 4 pages, 3 figure

    Pairing in the iron arsenides: a functional RG treatment

    Full text link
    We study the phase diagram of a microscopic model for the superconducting iron arsenides by means of a functional renormalization group. Our treatment establishes a connection between a strongly simplified two-patch model by Chubukov et al. and a five-band- analysis by Wang et al.. For a wide parameter range, the dominant pairing instability occurs in the extended s-wave channel. The results clearly show the relevance of pair scattering between electron and hole pockets. We also give arguments that the phase transition between the antiferromagnetic phase for the undoped system and the superconducting phase may be first order
    corecore