17,184 research outputs found
Stability Boundaries for Resonant Migrating Planet Pairs
Convergent migration allows pairs of planet to become trapped into mean
motion resonances. Once in resonance, the planets' eccentricities grow to an
equilibrium value that depends on the ratio of migration time scale to the
eccentricity damping timescale, , with higher values of
equilibrium eccentricity for lower values of . For low equilibrium
eccentricities, . The stability of a planet pair
depends on eccentricity so the system can become unstable before it reaches its
equilibrium eccentricity. Using a resonant overlap criterion that takes into
account the role of first and second order resonances and depends on
eccentricity, we find a function that defines the lowest
value for , as a function of the ratio of total planet mass to stellar mass
() and the period ratio of the resonance defined as ,
that allows two convergently migrating planets to remain stable in resonance at
their equilibrium eccentricities. We scaled the functions for each
resonance of the same order into a single function . The function
for planet pairs in first order resonances is linear with increasing planet
mass and quadratic for pairs in second order resonances with a coefficient
depending on the relative migration rate and strongly on the planet to planet
mass ratio. The linear relation continues until the mass approaches a critical
mass defined by the 2/7 resonance overlap instability law and .
We compared our analytic boundary with an observed sample of resonant two
planet systems. All but one of the first order resonant planet pair systems
found by radial velocity measurements are well inside the stability region
estimated by this model. We calculated for Kepler systems without
well-constrained eccentricities and found only weak constraints on .Comment: 11 pages, 7 figure
Earnings Losses for Injured Workers
This article address the question "What proportion of all injured workers received adequate wage replacement?
The Acquisition of Free Morpheme by a Two-year Old Indonesian Child
The aim of this study was to describe types and how of the free morpheme uttered by a two-year-old Indonesian Child. It was a qualitative research design which was observed with a single case study. The instruments used were observation and interview. The researcher observed the subject for two months where conversation in diffrent contexts in daily activities took place.The data collected were the utterances produced by the subject in diffrent context and interview. The data were analyzed by using the theory of language acquisition and free morpheme. The results of this study were: (1) the two types of free morpheme namely lexical and function word were uttered by the subject in his daily activities in diffrent context. (2) the using of free morpheme occured analysis were: saying statement, refusing advise, saying dislike, asking gift, refusing comment, asking question, and the last is avoiding quarrel. The using of free morpheme based on the speaker\u27s backgruond analysis was internded to be used for the interaction in community
The Likelihood Encoder for Lossy Source Compression
In this work, a likelihood encoder is studied in the context of lossy source
compression. The analysis of the likelihood encoder is based on a soft-covering
lemma. It is demonstrated that the use of a likelihood encoder together with
the soft-covering lemma gives alternative achievability proofs for classical
source coding problems. The case of the rate-distortion function with side
information at the decoder (i.e. the Wyner-Ziv problem) is carefully examined
and an application of the likelihood encoder to the multi-terminal source
coding inner bound (i.e. the Berger-Tung region) is outlined.Comment: 5 pages, 2 figures, ISIT 201
A Bit of Secrecy for Gaussian Source Compression
In this paper, the compression of an independent and identically distributed
Gaussian source sequence is studied in an unsecure network. Within a game
theoretic setting for a three-party noiseless communication network (sender
Alice, legitimate receiver Bob, and eavesdropper Eve), the problem of how to
efficiently compress a Gaussian source with limited secret key in order to
guarantee that Bob can reconstruct with high fidelity while preventing Eve from
estimating an accurate reconstruction is investigated. It is assumed that Alice
and Bob share a secret key with limited rate. Three scenarios are studied, in
which the eavesdropper ranges from weak to strong in terms of the causal side
information she has. It is shown that one bit of secret key per source symbol
is enough to achieve perfect secrecy performance in the Gaussian squared error
setting, and the information theoretic region is not optimized by joint
Gaussian random variables
A Rate-Distortion Based Secrecy System with Side Information at the Decoders
A secrecy system with side information at the decoders is studied in the
context of lossy source compression over a noiseless broadcast channel. The
decoders have access to different side information sequences that are
correlated with the source. The fidelity of the communication to the legitimate
receiver is measured by a distortion metric, as is traditionally done in the
Wyner-Ziv problem. The secrecy performance of the system is also evaluated
under a distortion metric. An achievable rate-distortion region is derived for
the general case of arbitrarily correlated side information. Exact bounds are
obtained for several special cases in which the side information satisfies
certain constraints. An example is considered in which the side information
sequences come from a binary erasure channel and a binary symmetric channel.Comment: 8 pages. Allerton 201
Joint Source-Channel Secrecy Using Hybrid Coding
The secrecy performance of a source-channel model is studied in the context
of lossy source compression over a noisy broadcast channel. The source is
causally revealed to the eavesdropper during decoding. The fidelity of the
transmission to the legitimate receiver and the secrecy performance at the
eavesdropper are both measured by a distortion metric. Two achievability
schemes using the technique of hybrid coding are analyzed and compared with an
operationally separate source-channel coding scheme. A numerical example is
provided and the comparison results show that the hybrid coding schemes
outperform the operationally separate scheme.Comment: 5 pages, 1 figure, ISIT 201
The Likelihood Encoder for Lossy Compression
A likelihood encoder is studied in the context of lossy source compression.
The analysis of the likelihood encoder is based on the soft-covering lemma. It
is demonstrated that the use of a likelihood encoder together with the
soft-covering lemma yields simple achievability proofs for classical source
coding problems. The cases of the point-to-point rate-distortion function, the
rate-distortion function with side information at the decoder (i.e. the
Wyner-Ziv problem), and the multi-terminal source coding inner bound (i.e. the
Berger-Tung problem) are examined in this paper. Furthermore, a non-asymptotic
analysis is used for the point-to-point case to examine the upper bound on the
excess distortion provided by this method. The likelihood encoder is also
related to a recent alternative technique using properties of random binning
- …