26 research outputs found

    Magneto-hydrodynamic Simulations of a Jet Drilling an HI Cloud: Shock Induced Formation of Molecular Clouds and Jet Breakup

    Full text link
    The formation mechanism of the jet-aligned CO clouds found by NANTEN CO observations is studied by magnetohydrodynamical (MHD) simulations taking into account the cooling of the interstellar medium. Motivated by the association of the CO clouds with the enhancement of HI gas density, we carried out MHD simulations of the propagation of a supersonic jet injected into the dense HI gas. We found that the HI gas compressed by the bow shock ahead of the jet is cooled down by growth of the cooling instability triggered by the density enhancement. As a result, cold dense sheath is formed around the interface between the jet and the HI gas. The radial speed of the cold, dense gas in the sheath is a few km/s almost independent of the jet speed. Molecular clouds can be formed in this region. Since the dense sheath wrapping the jet reflects waves generated in the cocoon, the jet is strongly perturbed by the vortices of the warm gas in the cocoon, which breaks up the jet and forms a secondary shock in the HI-cavity drilled by the jet. The particle acceleration at the shock can be the origin of radio and X-ray filaments observed near the eastern edge of W50 nebula surrounding the galactic jet source SS433.Comment: 30 pages, 16 figure

    Discovery of possible molecular counterparts to the infrared Double Helix Nebula in the Galactic center

    Full text link
    We have discovered two molecular features at radial velocities of -35 km/s and 0 km/s toward the infrared Double Helix Nebula (DHN) in the Galactic center with NANTEN2. The two features show good spatial correspondence with the DHN. We have also found two elongated molecular ridges at these two velocities distributed vertically to the Galactic plane over 0.8 degree. The two ridges are linked by broad features in velocity and are likely connected physically with each other. The ratio between the 12CO J=2-1 and J=1-0 transitions is 0.8 in the ridges which is larger than the average value 0.5 in the foreground gas, suggesting the two ridges are in the Galactic center. An examination of the K band extinction reveals a good coincidence with the CO 0 km/s ridge and is consistent with a distance of 8 +/-2 kpc. We discuss the possibility that the DHN was created by a magnetic phenomenon incorporating torsional Alfv\'en waves launched from the circumnuclear disk (Morris, Uchida & Do 2006) and present a first estimate of the mass and energy involved in the DHN.Comment: 32 pages, 23 figures, Accepted by Ap

    1.2.3.15 Fe-Cr-Mn

    No full text

    Evidence for a Cloud-Cloud Collision in Sh2-233 Triggering the Formation of the High-mass Protostar Object IRAS 05358+3543

    Full text link
    We have carried out a new kinematical analysis of the molecular gas in the Sh2-233 region by using the CO JJ = 2-1 data taken at \sim0.5 pc resolution. The molecular gas consists of a filamentary cloud of 5-pc length with 1.5-pc width where two dense cloud cores are embedded. The filament lies between two clouds, which have a velocity difference of 2.6 km s1^{-1} and are extended over \sim5 pc. We frame a scenario that the two clouds are colliding with each other and compressed the gas between them to form the filament in \sim0.5 Myr which is perpendicular to the collision. It is likely that the collision formed not only the filamentary cloud but also the two dense cores. One of the dense cores is associated with the high-mass protostellar candidate IRAS 05358+3543, a representative high-mass protostar. In the monolithic collapse scheme of high mass star formation, a compact dense core of 100 MM_\odot within a volume of 0.1 pc radius is assumed as the initial condition, whereas the formation of such a core remained unexplained in the previous works. We argue that the proposed collision is a step which efficiently collects the gas of 100 MM_\odot into 0.1 pc radius. This lends support for that the cloud-cloud collision is an essential process in forming the compact high-mass dense core, IRAS 05358+3543.Comment: 12 pages, 10 figures, two tables, submitted to Monthly Notices of Royal Astronomical Society(MNRAS
    corecore