10,496 research outputs found
Equilibrium spin currents: Non-Abelian gauge invariance and color diamagnetism in condensed matter
The spin-orbit (SO) interaction in condensed matter can be described in terms
of a non-Abelian potential known in high-energy physics as a color field. I
show that a magnetic component of this color field inevitably generates
diamagnetic color currents which are just the equilibrium spin currents
discussed in a condensed matter context. These dissipationless spin currents
thus represent a universal property of systems with SO interaction. In
semiconductors with linear SO coupling the spin currents are related to the
effective non-Abelian field via Yang-Mills magnetostatics equation.Comment: RevTeX, 4 page
Mesoscopic Spin-Hall Effect in 2D electron systems with smooth boundaries
Spin-Hall effect in ballistic 2D electron gas with Rashba-type spin-orbit
coupling and smooth edge confinement is studied. We predict that the interplay
of semiclassical electron motion and quantum dynamics of spins leads to several
distinct features in spin density along the edge that originate from
accumulation of turning points from many classical trajectories. Strong peak is
found near a point of the vanishing of electron Fermi velocity in the lower
spin-split subband. It is followed by a strip of negative spin density that
extends until the crossing of the local Fermi energy with the degeneracy point
where the two spin subbands intersect. Beyond this crossing there is a wide
region of a smooth positive spin density. The total amount of spin accumulated
in each of these features exceeds greatly the net spin across the entire edge.
The features become more pronounced for shallower boundary potentials,
controlled by gating in typical experimental setups.Comment: 4 pages, 4 figures, published versio
Small-angle impurity scattering and the spin Hall conductivity in 2D systems
An arbitrarily small concentration of impurities can affect the spin Hall
conductivity in a two-dimensional semiconductor system. We develop a
Boltzmann-like equation that can be used for impurity scattering with arbitrary
angular dependence, and for arbitrary angular dependence of the spin-orbit
field b(k) around the Fermi surface. For a model applicable to a 2D hole system
in GaAs, if the impurity scattering is not isotropic, we find that the spin
Hall conductivity depends on the derivative of b with respect to the energy and
on deviations from a parabolic band structure, as well as on the angular
dependence of the scattering. In principle, the resulting spin Hall
conductivity can be larger or smaller than the ``intrinsic value'', and can
have opposite sign. In the limit of small angle scattering, in a model
appropriate for small hole concentrations, where the band is parabolic and b ~
k^3, the spin Hall conductivity has opposite sign from the intrinsic value, and
has larger magnitude. Our analysis assumes that the spin-orbit splitting
and the transport scattering rate tau^{-1} are both small compared to the Fermi
energy, but the method is valid for for arbitrary value of b*tau.Comment: Errors corrected, references adde
Spin Hall effect in a system of Dirac fermions in the honeycomb lattice with intrinsic and Rashba spin-orbit interaction
We consider spin Hall effect in a system of massless Dirac fermions in a
graphene lattice. Two types of spin-orbit interaction, pertinent to the
graphene lattice, are taken into account - the intrinsic and Rashba terms.
Assuming perfect crystal lattice, we calculate the topological contribution to
spin Hall conductivity. When both interactions are present, their interplay is
shown to lead to some peculiarities in the dependence of spin Hall conductivity
on the Fermi level.Comment: 7 pages, 5 figure
Thermal ratchet effects in ferrofluids
Rotational Brownian motion of colloidal magnetic particles in ferrofluids
under the influence of an oscillating external magnetic field is investigated.
It is shown that for a suitable time dependence of the magnetic field, a noise
induced rotation of the ferromagnetic particles due to rectification of thermal
fluctuations takes place. Via viscous coupling, the associated angular momentum
is transferred from the magnetic nano-particles to the carrier liquid and can
then be measured as macroscopic torque on the fluid sample. A thorough
theoretical analysis of the effect in terms of symmetry considerations,
analytical approximations, and numerical solutions is given which is in
accordance with recent experimental findings.Comment: 18 pages, 6 figure
Periodic Structures with Rashba Interaction in Magnetic Field
We analyze the behaviour of a system of particles living on a periodic
crystal in the presence of a magnetic field B. This can be done by involving a
periodic potential U(x) and the Rashba interaction of coupling constant k_{so}.
By resorting the corresponding spectrum, we explicitly determine the band
structures and the Bloch spinors. These allow us to discuss the system
symmetries in terms of the polarizations where they are shown to be broken. The
dynamical spin will be studied by calculating different quantities. In the
limits: k_{so} and U(x)=0, we analyze again the system by deriving different
results. Considering the strong case, we obtain an interesting result that
is the conservation of the polarizations. Analyzing the critical point
\lambda_{k,\sigma}=\pm\sq{1\over 2}, we show that the Hilbert space associated
to the spectrum in z-direction has a zero mode energy similar to that of
massless Dirac fermions in graphene. Finally, we give the resulting energy
spectrum when B=0 and U(x) is arbitrary.Comment: 24 pages, references added, misprints corrected. Version to appear in
JP
Robust to impurity-scattering spin Hall effect in two-dimensional electron gas
We propose a mechanism of spin Hall effect in two-dimensional electron gas
with spatially random Rashba spin-orbit interaction. The calculations based on
the Kubo formalism and kinetic equation show that in contrast to the constant
spin-orbit coupling, spin Hall conductivity in the random spin-orbit field is
not totally suppressed by the potential impurity scattering. Even if the
regular contribution is removed by the vertex corrections, the terms we
consider, remain. Therefore, the intrinsic spin-Hall effect exists being,
however, non-universal.Comment: 4+ pages, 2 figure
Nuclear spin structure in dark matter search: The finite momentum transfer limit
Spin-dependent elastic scattering of weakly interacting massive dark matter
particles (WIMP) off nuclei is reviewed. All available, within different
nuclear models, structure functions S(q) for finite momentum transfer (q>0) are
presented. These functions describe the recoil energy dependence of the
differential event rate due to the spin-dependent WIMP-nucleon interactions.
This paper, together with the previous paper ``Nuclear spin structure in dark
matter search: The zero momentum transfer limit'', completes our review of the
nuclear spin structure calculations involved in the problem of direct dark
matter search.Comment: 39 pages, 12 figures, a review in revtex
Edge spin accumulation in a ballistic regime
We consider a mesoscopic {\it ballistic} structure with Rashba spin-orbit
splitting of the electron spectrum. The ballistic region is attached to the
leads with a voltage applied between them. We calculate the edge spin density
which appears in the presence of a charge current through the structure due to
the difference in populations of electrons coming from different leads.
Combined effect of the boundary scattering and spin precession leads to
oscillations of the edge polarization with the envelope function decaying as a
power law of the distance from the boundary. The problem is solved with the use
of scattering states. The simplicity of the method allows to gain an insight
into the underlaying physics. We clarify the role of the unitarity of
scattering for the problem of edge spin accumulation. In case of a straight
boundary it leads to exact cancellation of all long-wave oscillations of the
spin density. As a result, only the Friedel-like spin density oscillations with
the momentum 2k_F survive. However, this appears to be rather exceptional case.
In general, the smooth spin oscillations with the spin precession length
recover, as it happens, e.g., for the wiggly boundary. We demonstrate also,
that there is no relation between the spin current in the bulk, which is zero
in the considered case, and the edge spin accumulation.Comment: Latex, 6 pages, 2 fig
Non-Abelian gauge fields in the gradient expansion: generalized Boltzmann and Eilenberger equations
We present a microscopic derivation of the generalized Boltzmann and
Eilenberger equations in the presence of non-Abelian gauges, for the case of a
non-relativistic disordered Fermi gas. A unified and symmetric treatment of the
charge and spin degrees of freedom is achieved. Within this
framework, just as the Lorentz force generates the Hall effect, so does
its counterpart give rise to the spin Hall effect. Considering elastic
and spin-independent disorder we obtain diffusion equations for charge and spin
densities and show how the interplay between an in-plane magnetic field and a
time dependent Rashba term generates in-plane charge currents.Comment: 11 pages, 1 figure; some corrections and updated/extended reference
- …